Советские компьютеры: преданные и забытые. (Полная версия). Первые советские эвм Создание первой эвм в ссср

Рис. 8. «Электроника БК-0010» - классический вид с цветной плоской клавиатурой, напечатанной на бумаге и покрытой плёнкой (под бумагой - матрица клавиатуры из низкопрофильных кнопок ПКН-150)

Итак, в середине 1984 года в Советском Союзе на прилавках магазинов «Электроника», наконец, появился первый отечественный домашний компьютер - . Стоил он сначала 540, затем 600 рублей - примерно как цветной телевизор или хороший музыкальный центр, что было не дёшево, но вполне доступно для большинства населения. Надо сказать, к этому времени люди, увлекающиеся вычислительной техникой, из книг и журналов уже хорошо знали, что такое ПК и зачем он может быть нужен, поэтому интерес к БК-0010 был велик. А когда в 1986 году главный советский научно-популярный журнал «Наука и жизнь» начал публиковать материалы о БК-0010, о нём узнали буквально миллионы читателей. С другой стороны, не нужно преувеличивать спрос на такие ПК в те годы и их значение - большинство людей вполне логично воспринимали их просто как дорогую игрушку, не имеющую серьёзного практического применения. Но для любителей-энтузиастов появление в продаже домашних компьютеров стало важнейшим событием.

Рис. 9. БК-0010: 44 микросхемы, ПЗУ с Фокалом и МСТД в панельках (теоретически их легко заменить на другие, более нужные пользователю, программы), основные БИС (процессор и две вентильных матрицы) в дорогих металло-керамических корпусах

Процессор

Давайте, наконец, посмотрим, что представлял из себя этот компьютер. Первое, что следует отметить - это была совершенно оригинальная советская разработка, не имеющая каких-то явных зарубежных прототипов. Второе - это был один из первых в мире полностью 16-разрядный домашний компьютер. Причём во многих источниках написано ещё конкретнее - первый в мире домашний 16-разрадный ПК. То есть у БК был 16-разрядный процессор, 16-разрядное ОЗУ, 16-разрядное ПЗУ и 16-разрядный видеоконтроллер, поэтому и передача данных шла сразу 16-битными словами, и обработка в процессоре тоже выполнялась сразу над 16-ю битами данных; все регистры процессора, естественно, тоже были 16-разрядными. Напомню, в те годы подавляющее большинство недорогих ПК были либо полностью 8-разрядными, либо частично 16-разрядными, поэтому выпуск настоящего 16-разрядного бытового ПК был большим шагом вперёд. Кстати, процессор БК-0010 - знаменитый К1801ВМ1 - содержал 50000 элементов (около 17000 транзисторов), в то время как процессоры 8-разрядных ПК - всего лишь от 3,5 до 8,4 тысяч транзисторов, что уже говорит о явном преимуществе 16-разрядных. Отмечу, что чем больше разрядность процессора, тем быстрее он производит сложные вычисления и в среднем быстрее обрабатываются данные, особенно многоразрядные (16, 32, 64 бита и т.д.), но скорость выполнения простых программ и несложных вычислений непосредственно от разрядности почти не зависит. При этом скорость работы процессора сильно зависит от тактовой частоты и его архитектуры, особенно от способности выполнять несколько команд одновременно (наличия конвейерной обработки). Так вот, процессор БК-0010, представлявший первое поколение 16-разрядных микропроцессоров (МП), как и большинство применявшихся в то время зарубежных 16-разрядных процессоров, на практике по скорости чаще всего мало отличался от типичных 8-разрядных моделей, зато К1801ВМ1 был гораздо удобнее для программиста, поскольку имел чрезвычайно удачную и любимую многими систему команд машины PDP-11. Процессор БК работал на достаточно высокой частоте 3 МГц (причём К1801ВМ1 мог штатно работать на частоте до 5 МГц, а на практике и до 6 МГц), однако сильно тормозился контроллером памяти и дисплея, снижавшим его производительность примерно на 20-30%. В результате максимальная скорость процессора при исполнении программ в ОЗУ была всего 250 тысяч оп/с. Впрочем, 16-разрядная архитектура с удачной системой команд позволяла БК вполне уверенно конкурировать по скорости с типичными 8-разрядными ПК, оснащёнными процессорами с максимальной производительностью 500–1000 тыс. оп/с.

Рис. 10. КР1801ВМ1 - вариант К1801ВМ1 в более дешёвом пластиковом корпусе и без позолоты на выводах (в серии БК использовались обе разновидности - и в пластиковом, и в металло-керамическом корпусе)

ОЗУ и ПЗУ

Кроме процессора, важное значение имеют и другие параметры компьютера: объём оперативной и постоянной памяти, графические и звуковые возможности, особенности клавиатуры, способность работать с внешними устройствами, возможности расширения. По этим параметрам БК-0010 находится на вполне нормальном среднем уровне, не слишком выделяясь в ту или иную сторону от зарубежных аналогов середины 1980-х. А советских аналогов в то время просто не было. Оперативная память (оперативное запоминающее устройство - ОЗУ) имела размер 32 килобайта (Кбайт) и была поровну поделена между видеопамятью, в которой хранилось изображение, выводимое на экран, и памятью для программ пользователя. То есть для хранения программ и данных выделялось всего около 16 Кбайт - это совсем не много, но и не так уж мало: аналогичная ситуация с памятью, а то и гораздо хуже, была и на многих зарубежных домашних ПК. Даже первые IBM PC в самой простой, но отнюдь не дешёвой (1565 долл. без всякой периферии) комплектации имели всего 16 Кбайт ОЗУ, наряду с недорогими вариантами таких популярных ПК тех лет, как ZX Spectrum, Acorn BBC и других. А известнейший Commodore VIC–20 (предшественник Commodore 64), в начале 1980-х первым среди всех ПК преодолевший планку в 1 млн проданных экземпляров, имел всего 5 (пять!) Кбайт ОЗУ. Кстати, главный американский заочный конкурент БК - TI-99/4A (также имевший 16-разрядный процессор), был укомплектован просто издевательским ОЗУ пользователя - всего-навсего 256 байт! Правда, видеопамять у 99/4А тоже 16 Кбайт. Под постоянную память (ПЗУ) в БК-0010 было отведено 32 Кбайта, из которых использовалось обычно лишь 24 Кбайта, то есть установлено 3 микросхемы по 8 Кбайт и одна панелька оставалась пустой - туда при необходимости можно было воткнуть ПЗУ с программами пользователя. Причём два гнезда для ПЗУ (одно из которых пустое) находились под специальной съёмной крышкой, расположенной прямо на передней панели БК слева от клавиатуры. То есть для замены ПЗУ даже не нужно было разбирать корпус. Забегая вперёд, заметим, что и клавиатура БК-0010 предполагала простую возможность замены обозначений клавиш, т.е. разработчики предусмотрели всё, чтобы пользователь мог легко адаптировать его под свои собственные разные задачи, заменяя ПЗУ и даже меняя обозначения клавиш. Впрочем, конечно, подавляющее большинство владельцев БК использовали стандартные ПЗУ из комплекта ПК и совершенно не испытывали потребности в замене раскладки клавиатуры. К тому же, здесь есть ещё одна «маленькая деталь»: сделать собственные ПЗУ для замены штатных было совсем не просто - микросхемы постоянной памяти КР1801РЕ2, использовавшиеся в БК, программировались только на заводе в процессе изготовления кристалла микросхемы (это были так называемые «масочные ПЗУ»), и «прошить» их самостоятельно, с помощью какого-либо программатора, было нельзя; вместо КР1801РЕ2 можно было использовать аналогичные по структуре ППЗУ (программируемые постоянные ЗУ) К573РФ3 с ультрафиолетовым (УФ) стиранием, но они были очень дефицитны и малодоступны; использовать какие-то более распространённые микросхемы (например, популярные 8-разрядные ППЗУ с УФ-стиранием), теоретически, было вполне возможно, но более сложно из-за специфичности архитектуры КР1801РЕ2 и К573РФ3 (они специально рассчитаны на подключение к 16-разрядной шине МПИ).

Посмотрим, что находилось в ПЗУ БК-0010. Главная его часть - программа-монитор и драйверы устройств, занимавшие одну 8-Кбайт микросхему КР1801РЕ2. Здесь находились важнейшие драйверы, обеспечивающие ввод с клавиатуры, вывод на экран, работу с магнитофоном и т. д., а также простая программа-монитор, которая использовалась в основном для загрузки и запуска программ в машинных кодах. Вторая микросхема ПЗУ на 8 Кбайт - это тестово-диагностическая программа, позволявшая проверить работоспособность всех устройств БК. Естественно, на нормально работающем компьютере она была просто не нужна и вообще использовалась очень редко, поскольку с надёжностью у этого ПК особых проблем не было. Наконец, третью микросхему занимал интерпретатор языка Фокал (расшифровывается как «формульный калькулятор», а не «фортран-паскаль», как некоторые думали). Наличие в ПЗУ Фокала вместо уже стандартного в то время Бейсика служило одной из главных мишеней для критиков БК-0010. Действительно, программ на Бейсике уже в то время публиковалось огромное количество, а Фокал был известен даже не всем программистам. Однако сам по себе Фокал считался простым и достаточно удобным языком, позволявшим создавать программы любого назначения. Хотя у него имелись некоторые важные отличия от Бейсика, они были направлены на упрощение программирования, так что освоение Фокала выглядело ничуть не более сложным, чем обучение Бейсику. В общем, владельцы БК быстро привыкали к Фокалу, и особых неудобств от его наличия вместо Бейсика, вроде бы, не испытывали. При этом Бейсик тоже можно было использовать, загружая его в оперативную память с магнитофона. Правда, ОЗУ пользователя итак было невелико, так что в этом случае для программ на Бейсике оставались считанные килобайты.

Использование в БК-0010 Фокала вместо Бейсика являлось большой загадкой для всех его владельцев. Однако всё объясняется просто: дело в том, что на момент начала выпуска БК для подобных ПК уже был почти подходящий интерпретатор Бейсика - так называемый Бейсик-ДВК (версия, адаптированная для компьютеров ДВК), но он отличался чрезвычайно низкой скоростью работы и отсутствием поддержки графики. Вряд ли разработчиков БК сильно смутила скорость работы, скорее они просто не смогли уместить эту версию Бейсика, переделанную для БК с добавлением графических и других команд, в 8 Кбайт ПЗУ. В то же время, для PDP-совместимых компьютеров существовала версия интерпретатора Фокала размером около 6 Кбайт, которая была расширена простейшими функциями работы с графикой и магнитофоном, и даже после этого легко поместилась в 8 Кбайт ПЗУ вместе с полными текстами сообщений об ошибках и краткой справкой об управляющих клавишах, командах и функциях Фокала. К тому же программы на Фокале работали примерно на треть быстрее, чем программы на Бейсике ДВК. В этих условиях разработчики БК-0010 приняли в 1983 году самое простое решение - не пытаться создать новый Бейсик размером до 8 Кбайт или отвести под него уже 16 Кбайт, либо как-то ужать существующий Бейсик-ДВК (а он уже был очень упрощённой версией), а взять уже готовый, очень компактный интерпретатор Фокала. Впрочем, разработку нового транслятора Бейсика специально для БК всё же заказали Вильнюсскому госуниверситету, и в 1985 году вышла первая его версия размером 9 Кбайт для загрузки в ОЗУ БК с кассеты, а в 1986 году - 24-килобайтная версия для размещения в ПЗУ. О вильнюсском Бейсике речь также пойдёт несколько ниже.

Графика и звук

Теперь давайте посмотрим на изобразительные возможности БК-0010. Он имеет чисто графический экран с двумя основными разрешениями: 256 строк по 512 точек в строке и 256 строк по 256 точек. Первое поддерживает только 2 цвета для любой точки, второе - 4 цвета, причём эти цвета постоянны - чёрный, красный, зелёный и синий. Белый цвет в цветном режиме не отображается. Программируемой палитры нет. Специального текстового режима с минимальным объёмом видеопамяти нет - как и на многих других ПК, символы выводятся в графическом режиме в виде маленьких картинок (а это значит, что есть возможность без проблем показывать на экране любые символы любых алфавитов). На экране отображается 24 строки по 32 или 64 символа в строке, вверху экрана есть также служебная строка, на которой выводятся текущие режимы работы и подсказка о назначении «функциональных» клавиш. Имеется достаточно редкая для того времени функция аппаратного плавного вертикального скроллинга - прокрутки экрана.

Вообще, БК имеет два видеовыхода - цветной RGB для подключения цветного монитора или телевизора (ТВ) и чёрно-белый композитный - для подключения чёрно-белого монитора или ТВ. Правда, во многих БК выход RGB на заводе почему-то не устанавливался, и его приходилось допаивать уже самому владельцу ПК. Высокое разрешение 512 × 256 нормально поддерживалось только чёрно-белым выходом, а при подключении через цветной изображение на экране в таком разрешении приобретало странный вид с непонятными цветными контурами и точками. При этом разобрать надписи можно, но нормальной такую работу не назовёшь. Владельцам цветных телевизоров приходилось подключать БК двумя кабелями - один от чёрно-белого выхода БК к композитному входу телевизора, а другой - от цветного выхода БК к RGB-входу ТВ, а в процессе работы переключать входы в зависимости от разрешения, используемого в программе. Впрочем, большинство программ, особенно игр, задействовало только цветной режим с разрешением 256 × 256, и частое переключение не требовалось. К тому же при работе в Фокале, Бейсике или системном мониторе можно было с клавиатуры быстро переключать разрешение экрана, приводя его к нужному виду.

Рис. 12. БК-0010: разъемы питания, параллельного интерфейса, выхода на ч/б телевизор или монитор, шины МПИ и магнитофона; выход RGB (для цветного изображения) отсутствует, как и у многих других экземпляров БК (разъем и несколько других недостающих деталей можно было впаять на плату самостоятельно, также надо было проделать и недостающее отверстие в корпусе для него)

Кстати, подключить БК, как и почти любые другие отечественные ПК, к цветному телевизору в цветном режиме было не так-то просто: большинство телевизоров не имели никакого RGB-входа, хотя на многих моделях его установка была предусмотрена. Это было вызвано тем, что до массового появления домашних ПК к видеовходам просто-напросто нечего было подключать. А те устройства, вроде видеомагнитофонов или игровых телеприставок, которые работали в паре с телевизором, почти всегда имели самый обычный антенный выход, подключавшийся соответственно к антенному входу любого ТВ. В общем, владельцам БК либо приходилось делать несложную доработку своих телевизоров либо лицезреть даже на цветном телевизоре только чёрно-белое изображение.

Нужно заметить, что на БК был ещё так называемый режим расширенной памяти (РП), в который можно было быстро переключиться с клавиатуры. В этом режиме для вывода изображения отводилась только верхняя четверть экрана, зато ОЗУ пользователя расширялось до 28 Кбайт. То есть была возможность при необходимости сильно увеличить длину программ, не требующих задействования всего экрана - например, для каких-то сложных расчётов или баз данных и т. д. Интересно, что некоторые программы вроде копировщиков файлов использовали часть экранной памяти для хранения программ и данных и без перехода в режим РП - тогда на экране появлялись области «шума» из случайных точек случайного цвета.

Звуковые способности у БК-0010 самые обычные - никакого специального звукогенератора, звук воспроизводится чисто программно изменением бита в регистре (точнее, 2-х битов). Такое решение было очень характерно для многих советских и зарубежных ПК того времени. Встречались даже компьютеры совсем без звука - например, «Роботрон-1715» (ГДР). Конечно, звучание такого синтезатора, как правило, было совсем простым - обычно одноголосный звук с прямоугольной волновой формой одинаковой амплитуды и всё. Хотя при более хитрых алгоритмах вывода звука на БК можно было синтезировать и многоголосную музыку и шумовые эффекты и даже имитировать изменение громкости. Кроме того, использование специального встроенного аппаратного таймера БК позволяло также получить интересные звуковые эффекты. Однако в моменты воспроизведения звука процессор БК, как правило, был полностью загружен, поэтому вывод звука в процессе игры сильно тормозил работу, а о постоянном звучании музыки в игре речи обычно вообще не шло. В некоторых играх музыка всё же звучала, но выводилась она короткими фрагментами (в промежутках между которыми процессор успевал выполнять другие задачи вроде перемещения объектов на экране) или использовались более сложные алгоритмы, задействующие встроенный таймер и т.д.

Клавиатура

Ещё один интересный момент - клавиатура БК-0010. Самый первый вариант БК снабжался так называемой мембранной клавиатурой, представлявшей собой совершенно ровную поверхность с отпечатанными обозначениями клавиш. Под рисунком каждой клавиши в некотором углублении находятся контакты, которые замыкаются довольно сильным нажатием пальца. Эта конструкция, как и на других ПК, использовавших подобный вариант клавиатуры (например, Atari 400), сильно отличалась от привычных объёмных клавиш типа пишущей машинки и вызывала много нареканий. В результате производители БК через некоторое время заменили мембранную клавиатуру на другой вариант, внешне похожий, но внутри заметно отличный: вместо мембранной плёночной клавиатуры были установлены нормальные кнопочные переключатели с невысокими пластиковыми площадками-толкателями, а сверху всё это было накрыто бумажным листом с цветными обозначениями клавиш и прозрачной защитной плёнкой. Работать с такой клавиатурой было намного приятнее, хотя опять же привычной тактильной связи, характерной для объёмных клавиш, здесь не было - поверхность клавиатуры была совершенно гладкая, да и ход клавиш был совсем небольшой. Тем не менее, этот вариант оказался достаточно удачным и надёжным. Общее количество клавиш - 86 штук, что очень даже немало. К примеру, у знаменитого ZX Spectrum их было всего 40. При этом у БК клавиши разного назначения выделены разными цветами.

Рис. 13. Чрезвычайно функциональная клавиатура БК-0010: 86 кнопок разного назначения, множество клавиш для редактирования текста и выбора режимов, на буквенных клавишах нанесены также символы псевдографики

Бросается в глаза не только весёленькая расцветка клавиатуры, но и большое количество непривычных и загадочных клавиш с русскими обозначениями: ГРАФ, ШАГ, ПОВТ, БЛОК РЕД, ИНД СУ, ЗАП, УСТ ТАБ, СБР ТАБ, ВС, ГТ и т. д. А ведь все они выполняли какие-то важные функции, иначе зачем было их выносить на клавиатуру в качестве отдельных кнопок. Например, кнопка ГРАФ переводит ПК в режим непосредственного рисования на экране, когда вместо привычного текстового появляется «графический» курсор, который можно перемещать с помощью стрелок, а кнопками ЗАП и СТИР включать режимы записи или стирания, чтобы курсор оставлял след (можно выбрать нужный цвет) или стирал ранее нарисованное. То есть разработчики БК предусмотрели даже простейший графический редактор, встроенный в ПЗУ, и этот «редактор», несмотря на примитивность, оказался очень полезен - он активно использовался для ввода в ПК даже весьма сложной графики (обычно она сначала рисовалась на миллиметровке или школьной тетради в клетку, а перевести её по точкам на экран было уже совсем просто, причём необходимости использовать более сложный графический редактор часто просто не было). Кнопки УСТ ТАБ и СБР ТАБ позволяют устанавливать или удалять на экране произвольные позиции табуляции (тоже весьма полезная функция), ГТ перемещает курсор на 8 позиций вправо, ШАГ позволяет выполнять программу на Фокале или Бейсике пошагово (очень удобно при отладке программ), ИНД СУ включает отображение на экране управляющих символов (аналог кнопки “Пи” в современном MS Word). Кнопка ПОВТ служит для повтора последней нажатой клавиши (автоповтора при долгом удержании кнопки у БК в стандартном режиме не было). Кстати, особенностью контроллера клавиатуры БК было то, что он не мог отслеживать несколько одновременно нажатых кнопок - код клавиши выдавался только один, что несколько затрудняло управление в играх. Впрочем, при использовании нестандартных приёмов можно было определить и несколько нажатых клавиш. К тому же почти во всех играх был предусмотрен выбор клавиш самим пользователем. А ещё в играх здорово помогал джойстик, который в этом случае, конечно, был намного удобнее клавиатуры.

Надо сказать, разработчики компьютера довольно быстро отреагировали на критику пользователей и в 1986 году создали усовершенствованный вариант БК под названием БК-0010-01, в котором исправили два наиболее спорных момента: во-первых, наконец, поместили в ПЗУ Бейсик вместо Фокала, а во-вторых, поменяли клавиатуру на привычный вариант с объёмными полноходовыми кнопками. При этом клавиш стало несколько меньше - 74 и качество клавиатуры вызвало не меньше замечаний, чем у первых моделей. Дело в том, что клавиши БК-0010-01 имели не слишком удачную конструкцию и были очень подвержены такому явлению, как «дребезг контактов», когда при однократном нажатии кнопки выдаётся несколько одинаковых символов. Эта проблема в большей или меньшей степени присутствует во всех типах клавиатур, но обычно легко решается программным или аппаратно–программным способом. К сожалению, у БК-0010-01 предусмотренные конструкторами меры по защите от дребезга контактов оказались недостаточными, и в этом плане новая клавиатура была явно хуже старой. Впрочем, пользователи БК, как могли, сами решали эту проблему, переделывая разными способами клавиатуру или просто работая на ней короткими чёткими ударами. Интересно, что в новой модификации БК была убрана съёмная крышка на передней панели для быстрой замены ПЗУ, да и возможность замены обозначений клавиш тоже пропала со сменой типа клавиатуры - то есть возможности адаптации компьютера под задачи пользователя несколько снизились. Видимо, это было сделано в связи с очень малой востребованностью этих функций в реальной жизни.

Рис. 14. БК-0010-01: вариант с надёжной плёночной клавиатурой (современного типа); от клавиатуры с механическими кнопками отличается ровными (без выступов) боковыми сторонами

Рис. 15. БК 0010-01: «дешёвый» вариант - все микросхемы в пластиковых корпусах. ПЗУ без панелек. 45 микросхем (на одно ПЗУ больше, чем у БК-0010)

Бейсик в ПЗУ БК-0010-01 занимал целых 3 микросхемы - 24 Кбайта и представлял собой так называемый вильнюсский Бейсик, разработанный в середине 1980-х в Вильнюсском университете - очень интересный вариант транслятора компилирующего типа, позволявший выполнять многие программы в разы или даже в десятки раз быстрее, чем это делали интерпретаторы Фокала или Бейсика ДВК. При этом для пользователя работа с таким транслятором почти ничем не отличалась от работы с обычным интерпретатором. Бейсик БК был очень развитой версией, аналогичной стандарту MSX (M achines with S oftware eX changeability) и поддерживающей почти все его графические и другие операторы, способный работать с целыми числами, а также вещественными одинарной и двойной точности. Правда, были у вильнюсского Бейсика и недостатки - например, невозможность размещения нескольких операторов в одной строке и большие требования к объёму памяти. Первое ограничение - один оператор в строке - было очень странным и необъяснимым (тем более, что упрощённая 9-килобайтная версия этого же Бейсика, предназначенная для загрузки в ОЗУ, позволяла писать несколько операторов в строке!), а с памятью ситуация была такая: поскольку Бейсик БК после подачи команды RUN (запуск на исполнение) сначала транслировал программу в особый промежуточный код, который затем исполнялся гораздо быстрее, чем это делали классические интерпретаторы, получается, что в памяти БК должны были храниться как исходный текст программы, так и как бы скомпилированный вариант или, по крайней мере, нужно было резервировать место под скомпилированную программу. В общем, программа на Бейсике могла занимать лишь половину пользовательской памяти БК, а фактически даже меньше - порядка 7 Кбайт, ведь нужно было ещё оставить место под переменные и служебные данные. При этом программа на Фокале могла занимать порядка 15 Кбайт. Так что ситуация с памятью у Бейсика БК была очень странная - максимальная длина программы на Бейсике была в 3 с лишним раза меньше, чем размер самого транслятора Бейсика. С другой стороны, 7-ми Кбайт всё же хватало для составления почти любых учебных программ, а также для многих расчётов и даже вполне приличных игр. К тому же не следует забывать о режиме расширенной памяти, позволявшем увеличить размер программ почти в 2 раза за счёт уменьшения видеопамяти.

Рис. 16. Фрагмент программы на Вильнюсском Бейсике БК-0010-01: в цветном режиме цвет текста по умолчанию - красный (белый в этом режиме у БК отсутствует), сверху - служебная строка с индикаторами текущих режимов работы (загадочные символы слева - это «подсказки» назначения «функциональных» клавиш (на БК называемых «ключами»), т. е. первые буквы операторов Бейсика, вводимых при нажатии на «ключи» К1-К10)

Для совместимости с первым вариантом БК в комплекте БК-0010-01 поставлялся специальный блок МСТД, подключаемый к системному разъёму и содержащий две микросхемы ПЗУ - с Фокалом и тестово-диагностической системой. Таким образом, объём ПЗУ у БК-0010-01 мог быть до 48 Кбайт (но одновременно использовалось не более 32-х) - в 2 раза больше, чем у прежнего БК-0010.

Рис. 17. Клавиатура у БК 0010-01 более традиционная - с объемными кнопками. Клавиш 74 - на 12 меньше, чем у БК-0010, и на основных клавишах нет символов псевдографики

Интересно, что выпуск усовершенствованного варианта БК-0010-01 вовсе не означал автоматического прекращения производства старого. Оба компьютера - БК-0010 и БК-0010-01 - несколько лет выпускались одновременно. При этом вариант -01 был на 50 рублей дороже - он обычно стоил 650 рублей (а в самом начале 1990-х - 750 руб).

О памяти, звуке и периферии

Ещё несколько слов об оперативной памяти БК. Конечно, её объём был маловат для работы с большими программами или стандартными операционными системами, но создатели программ очень активно использовали драйверы устройств и знакогенератор, находящиеся в ПЗУ всех версий БК, что позволяло сократить размер программ на несколько килобайт. Стандартное, несменяемое ПЗУ БК-0010 содержало драйверы вывода текста на экран, рисования точек и линий, ввода с клавиатуры, чтения с магнитофона и записи на него и другие. Оно же содержало и графические образы всех символов, отображаемых на экране. Это значительно облегчало задачу программиста и сокращало требования к объёму ОЗУ. Впрочем, возможность задействования ресурсов штатного ПЗУ активно использовалась и на других ПК (например, на «Спектруме»), но не на всех – скажем, у «Вектора-06Ц» в ПЗУ никаких драйверов устройств и знакогенераторов просто не было, всё это должно было загружаться в ОЗУ, являясь составной частью любой программы, и это несколько сокращало, так сказать, полезный объём ОЗУ пользователя и увеличивало на несколько килобайт размер программ. С другой стороны, по этой причине в большинстве программ и игр на БК используется одинаковый шрифт и очень похожее оформление заставок игр, в то время как на «Векторе» оформление гораздо разнообразнее.

О выводе звука создатели ПК того времени особо не заботились - в советских компьютерах не было ни выхода на наушники, ни специального линейного выхода. В каждом ПК был маленький, но довольно громкий динамик или пьезодинамик, а для получения большей громкости и лучшего качества использовался магнитофонный разъём ПК, куда поступал звук не только с магнитофонного выхода, но и с выхода отдельного звукосинтезатора, если он был. К этому разъёму легко подключался любой усилитель, но чаще всего в его роли выступал тот же магнитофон, который ставился на паузу в режиме записи. Соответственно, наушники подключались уже к магнитофону или усилителю.

К концу 1980-х годов для БК-0010 выпускалось несколько дополнительных устройств, расширяющих его возможности – например, джойстики для игр, манипулятор «мышь» под романтичным названием “Марсианка”, простой многоголосный музыкальный синтезатор “Менестрель”, контроллер флоппи-дисководов и даже компактный рулонный графопостроитель.

Рис. 18. Отличный герконовый мини-джойстик (серийная модель), оснащённый специальным разъемом для подключения к БК

БК-0011 и БК-0011М

Советские покупатели домашних ПК были, как правило, людьми образованными и прекрасно осведомлёнными о зарубежных достижениях в этой сфере. Они вовсе не были на всё согласными и неразборчивыми потребителями - наоборот, наши пользователи близко к сердцу принимали любые недостатки отечественной техники и с удовольствием слали разработчикам и изготовителям первых ПК свои замечания и предложения по их усовершенствованию. Главными недостатками БК считались малый объём ОЗУ, малое число отображаемых цветов, сравнительно медленный процессор, нестандартная клавиатура и наличие в ПЗУ Фокала вместо Бейсика. Как уже упоминалось, часть этих недостатков было исправлено в 1986-87 году выпуском БК-0010-01. В те же годы была разработана и значительно усовершенствованная модель , имеющая в 4 раза большее ОЗУ - 128 Кбайт (при этом ОЗУ пользователя (96–112 Кбайт) - в 6-7 раз больше, чем у БК-0010!), более высокую тактовую частоту (4 МГц вместо 3-х), контроллер флоппи-дисководов, два экранных буфера по 16 Кбайт и разные варианты цветовой палитры.

Рис. 19. БК-0011 - внешне практически полная копия БК-0010-01 (но опять появилась сдвижная крышка над панельками с ПЗУ)

Рис. 20. Основная плата БК-0011: 57 микросхем (на 12 больше, чем у БК-0010-01), всего одна панелька для пользовательского ПЗУ

Однако, по имеющимся данным, серийный выпуск БК-0011 начался только в 1989 году, причём через год она была заменена на БК-0011М - модель, имевшую улучшенную совместимость с БК-0010. Внешне БК-0011 была копией БК-0010-01, но внутри отличия довольно большие. К сожалению, вопреки ожиданиям многих пользователей, в новой модели не было существенных изменений графических возможностей – ни увеличения числа одновременно отображаемых цветов до 16, ни программируемой палитры. Разработчики добавили только выбор одной из 16-ти фиксированных палитр и второй кадровый буфер.

Рис. 21. Загадочный набор палитр БК-0011/0011М: хорошо видно, что во всех палитрах нулевой цвет всегда чёрный, в четырёх палитрах используются лишь два цвета (включая чёрный), две палитры полностью одинаковы, синий цвет задействован только в двух палитрах. Заметим, что нулевая палитра (первый столбец слева) – это все цвета, доступные на БК-0010/0010-01. Спасибо Алексею Морозову (vinxru) за наглядное отображение палитр БК-0011/0011М

То есть графика в программах для БК-0011/0011М стала заметно разнообразнее - в частности, появился-таки белый цвет в цветном режиме! - но радикального её улучшения не произошло. Впрочем, в плане графики БК-11/11М среди массовых советских домашних ПК уступали только «Вектору-06Ц», ПК8000 и, отчасти, клонам «Спектрума» - остальные компьютеры одновременно отображали либо те же 4 цвета, либо 8 цветов в низком разрешении, либо имели монохромную графику (белое на чёрном), либо вообще не имели графического режима.

Рис. 22. БК-0011М: никаких заметных отличий в дизайне от БК-0010-01 и БК-0011. Как и у других моделей БК, корпус, в зависимости от завода-изготовителя, мог быть не только традиционно чёрным: у разных моделей встречались также светло-серый, бежевый и тёмно-коричневый.

Рис. 23. Внутренняя конструкция БК-0011М: рядом с клавиатурой находится дополнительная плата с основной частью микросхем ПЗУ и пустыми панельками под ПЗУ пользователя

Рис. 24. Плата БК-0011М внешне полностью аналогична плате БК-0011. В пустое синее гнездо ПЗУ на левом краю основной платы вставляется разъем шлейфа модуля дополнительного ПЗУ (слева на снимке)

Рис. 25. Контроллер дисководов на основе БМК К1801ВП1-128 и ПЗУ с загрузчиком ОС К1801РЕ2-326, входивший в стандартный комплект БК-0011 и БК-0011М с момента их появления в 1989 году, вызвал бурный рост разработок дисковых операционных систем для БК и стал основой для множества других вариантов, которые могли содержать статическое ОЗУ (объемом 8 или 16 Кбайт) вместо ПЗУ, либо и ОЗУ, и ПЗУ вместе и т. д. Фото Н.Зимина

Внешняя память

В качестве внешнего запоминающего устройства в первые годы жизни БК-0010 использовались обычные бытовые магнитофоны. Стандартная скорость записи выбрана достаточно высокой – 1200 бит в секунду (у многих зарубежных ПК 1980-х она в 2-4 раза ниже), то есть загрузка программ занимала примерно 1–2 минуты, и это было вполне терпимо. Причём в этой части конструкции разработчики БК-0010 использовали оригинальное решение – для вывода на магнитофон задействовалось 2 бита выходного регистра (т.е. фактически 2-битный ЦАП), а не один, как у всех остальных ПК. Это позволяло использовать для записи на магнитофон как минимум три уровня сигнала, а не два, как обычно, что увеличивало надёжность хранения данных за счёт использования для более коротких импульсов более высокого уровня сигнала. Вообще, на одну 60-минутную кассету при стандартной скорости записи помещалось около 500 Кбайт данных - а это порядка 30–50 типичных программ. Кроме обычного формата записи энтузиастами было создано несколько так называемых турбо-копировщиков, позволявших увеличить скорость записи в несколько раз. Соответственно увеличивалась ёмкость кассеты и уменьшалось время загрузки программ. В общем, магнитофоны и кассеты в качестве средств хранения программ и данных были не таким уж плохим вариантом, поскольку магнитофон итак был практически в каждом доме, а кассеты тогда стоили гораздо дешевле дискет и были гораздо доступнее. Правда, использование магнитофона для разработки программ сильно замедляло и усложняло этот процесс, и здесь уже дисковод для гибких магнитных дисков оказывался более чем кстати. Возможность подключения БК к дисководам реализована в конце 1980-х годов, и в короткое время для БК было создано или адаптировано не меньше десятка дисковых операционных систем. Впрочем, дисководы тогда стоили очень дорого – нередко в разы больше самого ПК. Например, цена обычного 5,25-дюймового привода в магазинах «Электроника» достигала 1500–2000 рублей. Поэтому большинство владельцев БК и в 1990-е годы продолжали пользоваться магнитофонами и кассетами.

Рис. 26. Заставка ANDOS (с крутящейся трёхмерной надписью!) - популярной операционной системы для БК-0010-01, а также БК-0011 и БК-0011М (ANDOS была удобна тем, что имела формат дисков, совместимый с IBM PC, что позволяло легко обмениваться файлами между БК и PC-совместимыми ПК)

Рис. 27. Заставка MK-DOS - ещё одной популярной ОС для семейства БК-0010/0011, вышедшей одной из последних для БК: в 1992 году (заставка недвусмысленно копирует логотип MS Windows); MK-DOS, в отличие от ANDOS, несовместима по формату дискет с IBM PC, зато совместима с несколькими другими ОС для БК; для работы с файлами в MK-DOS также используется файловый менеджер, аналогичный Norton Commander

Рис. 28. Файловый менеджер ANDOS: как и большинство других файловых оболочек тех лет, внешне копировал суперпопулярную программу Norton Commander для IBM-совместимых ПК

Программы

Во многих статьях о БК-0010 в 1980–1990-е критиковалось отсутствие в комплекте поставки большого количества программ или сложность их приобретения. Это, в общем-то, обычная проблема для любых только что выпущенных компьютеров, и БК, конечно, не был исключением. Хотя программы активно разрабатывались профессиональными программистами и энтузиастами, приобрести их поначалу было непросто, поскольку заводам-изготовителям это было не очень-то интересно (их профиль – выпуск электронной техники, а не тиражирование программ на кассетах), а фирм-распространителей программ для домашних ПК в середине 1980-х ещё просто не существовало. Тем не менее, владельцы этих компьютеров, конечно, с самого начала обменивались программами и информацией, а к концу 1980-х появились кооперативы, занимающиеся тиражированием и распространением ПО для БК-0010 и других домашних компьютеров, причём к этому времени для БК уже было создано огромное количество программ самого разного назначения, в том числе, естественно, игр, обучающих программ, системных и прикладных. Например, на БК встречалось как минимум три версии Бейсика – вильнюсский вариант в ПЗУ объёмом 24 Кбайт, его сокращённая версия объёмом всего 9 Кбайт для загрузки в ОЗУ (для варианта БК, имеющего в ПЗУ Фокал вместо Бейсика) и чистый интерпретатор Бейсик-ДВК. Из языков программирования, соответственно, был также популярен Фокал в ПЗУ объёмом 8 Кбайт, для которого создавались полезные расширения (Focod, XFocal) и даже компиляторы. Другая интересная разработка, ориентированная в основном на сферу образования - так называемый, Т-язык, интерпретатор которого позволял создавать довольно быстрые и красочные обучающие, демонстрационные и игровые программы. На БК были и трансляторы таких языков, как Форт и Си. Но, безусловно, главный язык программирования для создания серьёзных программ - это Ассемблер, родной язык микропроцессора ПК, и для него существовало множество различных трансляторов, в том числе объединённых с редактором текста, а также дизассемблеры и отладчики. Кстати, система команд процессора БК-0010, как и других моделей на основе архитектуры PDP-11, считается одной из наиболее удобных, универсальных и эффективных. Поэтому программирование на Ассемблере БК достаточно просто осваивалось не только программистами, но и любителями-энтузиастами, что позволило в достаточно короткие сроки создать для БК большую библиотеку ПО. Сильно упрощало разработку программ и наличие в ПЗУ компьютера стандартных драйверов ввода-вывода с доступом через программное прерывание EMT. Причём использование этих драйверов было подробно описано в документации, идущей в комплекте к каждому БК. Много хороших игровых, обучающих и прикладных программ создано и на вильнюсском Бейсике, который, будучи как бы полукомпилятором, отличался очень высокой скоростью выполнения простых операций, особенно с целыми числами. При этом в программах на Бейсике часто использовались также и подпрограммы в машинных кодах, позволяющие ещё больше ускорить какие-то важные действия вроде вывода графики на экран.

Для БК известно более 800 игр на Ассемблере, а также множество - на Бейсике и Фокале. Общий уровень игр высокий, очень много игр оригинальных или почти оригинальных, а не «содранных» один в один с популярных иностранных компьютеров. Отмечу, что, если первые игры для БК часто были чёрно-белыми, особенно те, что перенесены с компьютеров ДВК, то к концу 1980-х программисты уже вовсю использовали цветовые возможности ПК, создавая красочные заставки, задействуя псевдоцвета (смешивая основные цвета в шахматном порядке или полосами и т.п.) для преодоления ограничения в 4 отображаемых цвета, программно реализуя цветные «спрайты» с точным наложением на сложный фон.

БК: итоги

Подводя итоги в рассказе о первом советском бытовом компьютере «Электроника БК-0010», давайте ещё раз отметим его сильные и слабые стороны.
Сильные стороны. В целом, компьютер получился, безусловно, удачный. Симпатичный и компактный корпус, высокое качество изготовления, полностью 16-разрядная архитектура с очень удобной системой команд микропроцессора - это однозначные плюсы.
Недостатки и спорные моменты. Небольшой объём ОЗУ и малое число отображаемых цветов – с одной стороны, конечно, минус, особенно для конца 1980-х и начала 1990-х, хотя в начале 1980-х такая память и такие графические возможности были вполне обычными и на других ПК. С другой стороны - памяти-то могло быть ещё меньше (как у некоторых популярных зарубежных ПК начала 1980-х) и хорошо, что поддержка цвета и графики вообще предусмотрена разработчиками БК, поскольку в те годы вполне обычными были и компьютеры вовсе без графики и цвета, с чисто текстовым монохромным экраном, как, например, знаменитые TRS-80, Commodore PET или Sinclair ZX81, или, позднее, отечественные ПК на основе «Радио-86РК». Использование в ПЗУ Фокала вместо Бейсика в первых вариантах БК - также для кого-то недостаток, но можно воспринимать это и как одну из «изюминок» нашего первопроходца, отличавшую его от большой массы зарубежных аналогов, всех как один оснащённых Бейсиком.

Сравнение с западными ПК

Сравнивая БК-0010 с иностранными домашними компьютерами того времени, можно заметить, что по всем параметрам он выглядит вполне достойно, и широко распространённый миф о какой-то «отсталости» и неоригинальности советских компьютеров в этом случае абсолютно не подтверждается. Если посмотреть на широко известные иностранные ПК, появившиеся примерно в то же время, т. е. в 1982–1984 годах, то ничего сверхъестественного мы не увидим - ни каких-то мощных процессоров, ни огромного объёма памяти, ни невероятной графики. В качестве процессоров использовались всё те же 8-разрядные модели, что и в середине-конце 1970-х, с тактовой частотой от 1 до 4 МГц, в среднем мало отличавшиеся по скорости от 16-битного процессора БК-0010 с частотой 3 МГц. Оперативная память составляла от 8 до 64 Кбайт (чаще всего от 32 до 64) , видеопамять - от 6 до 20 Кбайт, ПЗУ - от 16 до 32 Кбайт. У БК, напомню, оперативная память была 32 Кбайт, видеопамять - 16 Кбайт, ПЗУ - 24 (БК-0010) или 32–48 (48 - у БК-0010-01 с блоком МСТД) Кбайт, то есть никаких отличий в худшую сторону от среднего зарубежного уровня у БК мы не видим, скорее наоборот. С графическими возможностями ситуация интереснее: с одной стороны, многие «иностранцы» в те годы уже поддерживали более многоцветную графику - обычно 8 или 15–16 цветов, вместо 4-х у БК, но графика значительной части зарубежных ПК была ориентирована исключительно на игры, как, например, у Commodore 64, Atari или MSX, к тому же отличаясь большими ограничениями в плане разрешения экрана и произвольного выбора цветов точек. К примеру, у знаменитого ZX Spectrum при доступных 15 цветах есть очень серьёзные ограничения, связанные с атрибутной структурой цветного изображения - в каждом знакоместе экрана размером 8 х 8 точек (а это 64 точки) можно использовать лишь 2 цвета, что приводит к полной неспособности выводить детализированное многоцветное изображение. В результате из-за сложности формирования динамичной цветной картинки многие игры для него имели просто двухцветное игровое поле, т.е. фактически монохромную графику, а в неигровой сфере графика «Спектрума» отличалась ярко выраженным так называемым блочным эффектом, когда при выводе сложной картинки вместо чётких разноцветных точек и линий отображались непонятные и совершенно незапланированные цветные квадратики. Похожая проблема есть и у ПК стандарта MSX - у них в графическом режиме тоже подобная атрибутная графика с 15-ю цветами, но размер блока гораздо меньше - 1х8 точек. Здесь при выводе произвольной графики артефакты менее заметны, но также очень даже присутствуют. В то же время БК-0010 имеет меньшее число доступных цветов, зато позволяет свободно выбирать из них цвет любой точки без всяких атрибутных ограничений, что даёт возможность отображать гораздо более чёткую и правильную произвольную графику. Кроме того, те же MSX и ZX Spectrum имеют только одно разрешение экрана и притом невысокое - 256 × 192 точки, а БК поддерживает не только среднее разрешение - 256 × 256, но и высокое - 512 х 256, что очень важно и полезно для серьёзного использования ПК, такого как редактирование текста, работа с таблицами, графиками и т.д. Также можно заметить, что ни MSX, ни «Спектрум» не имеют плавного аппаратного вертикального сдвига экрана, а у БК он предусмотрен, что очень важно, прежде всего, для игровых и некоторых других программ, выводящих динамичную графику (да и просто для работы с текстом). У таких домашних ПК, как Commodore 64 и Atari 400/800/XL/XE графические возможности хорошие, но они полностью ориентированы на игры. В неигровой сфере их способности также сильно ограничены. Скажем, самый распространённый домашний ПК всех времён и народов - Commodore 64 - имел такие параметры отображения графики: при разрешении 320×200 точек в каждом знакоместе 8х8 точек было доступно лишь 2 цвета, произвольно выбираемых из палитры в 16 цветов (т.е. полностью аналогично «Спектруму»); при низком разрешении 160 × 200 точек в каждом знакоместе доступно уже 4 цвета (один из которых общий для всего экрана) - это уже неплохо, но разрешение слишком слабое, с очень заметной пикселизацией; высокого разрешения у «Коммодора 64» вообще не было; кроме того, интерпретатор Бейсика в ПЗУ «Коммодора» совсем не поддерживал никаких операторов для вывода графики - ни точек, ни линий, ни окружностей и т.д. - всё это предлагалось рисовать, ни много, ни мало, записывая соответствующие данные прямо в видеопамять компьютера командой POKE (!). Кстати, игры для С64 и «Атари» также чаще всего использовали сравнительно низкое разрешение порядка 160 × 200 точек (а у «Атари» и меньше), что зачастую делало графику в играх достаточно грубой, простоватой и несовременной, и сравнительно богатая цветовая палитра не могла спасти ситуацию. Еще одна популярная модель (гораздо более дорогая, чем ранее упомянутые) - Apple IIe - имела также странные параметры графики: хорошее основное разрешение 280 × 192 точки при 6 цветах, но с особыми ограничениями на выбор цветов, привязанными к американскому стандарту цветного телевидения NTSC. Качество цветной графики у неё как в играх, так и в неигровой сфере обычно было достаточно примитивным. Даже текст на цветном мониторе у Apple II выводился с очень заметными цветными помехами. Наконец, даже у появившихся в 1983 году довольно дорогих IBM PC/XT основными видеокартами были CGA, отображавшими в цветном графическом режиме одновременно лишь 4 цвета, правда с возможностью выбора из двух или трёх палитр, но подбор цветов в палитрах вызывал ещё больше вопросов, чем у БК. Кстати, процессор у PC/XT (Intel 8088) хоть и относился к классу почти 16-разрядных, но также не показывал выдающихся скоростных данных - во многих тестах PC/XT находился примерно на уровне массовых 8-разрядных моделей.

Как уже говорилось, звуковые способности БК-0010 и БК-0011 достаточно обычные, примерно такие же, как у Apple IIe, ZX Spectrum и IBM PC. Звук воспроизводился чисто программно с существенной загрузкой процессора, поэтому непосредственно во время игры звуковые эффекты, как правило, были минимальными и кратковременными, а музыка играла обычно только на заставках и в паузах. В то же время, игровые зарубежные ПК - такие, как Commodore 64, Atari и MSX - имели более сложные звуковые синтезаторы, позволявшие выводить трёхканальную музыку и эффекты без загрузки процессора, поэтому звуковое и музыкальное оформление игр на этих ПК, безусловно, более богатое. Тем не менее, БК не был чисто игровым ПК, также как, например, и Apple II, и IBM PC, поэтому отсутствие продвинутого звукового генератора для него вполне простительно и оправданно.

Вообще, здесь напрашивается интересная мысль, что БК-0010 и БК-0011 по своим характеристикам действительно ближе к таким универсальным и даже профессиональным компьютерам, как Apple IIe, Acorn BBC и IBM PC, поскольку видеосистема БК также ориентирована на отображение произвольной графики, а не игровой, звуковой генератор также характерен больше для неигровых ПК, да и 16-битный процессор используется примерно такой же, как в отечественных профессиональных ПК и микро-ЭВМ серий ДВК, «Электроника» и других. Соответственно, по большому счёту, такие ПК заслуживают более серьёзного и уважительного отношения, чем компьютеры-игрушки или игровые приставки, ориентированные исключительно на такое интересное, но, к сожалению, абсолютно бесполезное занятие, как компьютерные игры. Впрочем, это, конечно, не значит, что для БК не было игр - очень даже были, и много, и хороших, и часто ничуть не хуже, чем на зарубежных игровых ПК. Но владелец БК мог не только играть, но и, к примеру, заниматься творчеством, составляя программы для рисования на экране цветных графиков, узоров, витражей, фрактальных множеств, клеточных автоматов и т.д. и т.п., получая при этом четкое и детальное цветное изображение (хоть и не многоцветное), а не месиво из цветных квадратиков и прямоугольников, как на ZX Spectrum, MSX или С64.

В целом, можно ещё раз сделать вывод, что БК-0010 был на очень приличном уровне для недорогого домашнего ПК и вполне мог конкурировать с распространёнными 8-битными зарубежными моделями (а 16- и 32-битные зарубежные ПК стоили многократно дороже). Отдельные недостатки БК-0010 - такие, как сравнительно небольшой объём оперативной памяти и малое число отображаемых цветов - были почти исправлены в модели БК-0011/0011М. Программное обеспечение для БК - наиболее развитое среди советских домашних ПК. Вообще, серия БК-0010/БК-0011 была одной из наиболее массовых в СССР, входя в пятёрку самых распространённых в СССР компьютеров (наряду с IBM-совместимыми, Spectrum-совместимыми, УКНЦ и ДВК) - по имеющимся данным, за все годы производства таких компьютеров было выпущено около 160 тысяч. При этом БК использовались не только дома, но и как учебные ПК, а также частично и как профессиональные либо управляющие ЭВМ.

Кто первый?

Наконец, затронем подробнее ещё один интересный момент, связанный с БК-0010 – был ли он действительно первым в мире домашним полностью 16-разрядным ПК? Во многих источниках написано именно так, хотя разобраться досконально в этом вопросе совсем не просто. В начале 1980-х годов персональные компьютеры начали выпускать сотни фирм по всему миру, включая США, Великобританию, Германию, Францию, Японию, Южную Корею, Гонконг, Австралию, Бразилию, соцстраны и т.д. Однако если посмотреть на известные модели, о которых можно найти достоверную информацию в Интернете, получается, что действительно до 1983-85 года 16-разрядных домашних ПК (во всяком случае, массово доступных по цене) не выпускалось, и первым недорогим полностью 16-битным был именно наш БК-0010! Это, на первый взгляд, довольно странно, поскольку сами 16-разрядные микропроцессоры появились ещё в середине-конце 1970-х. В частности тот же Intel 8088 (16-битный внутри и 8-битный снаружи), ставший основой для первых IBM PC, был заявлен ещё в 1979 году. Более того, на рубеже 1970-х и 1980-х годов появились и практически 32-разрядные микропроцессоры вроде знаменитого Motorola 68000. Однако в те годы производители и потребители домашних компьютеров были вполне удовлетворены и возможностями самых дешёвых 8-разрядных процессоров. К тому же конкуренция заставляла заботиться о минимальной себестоимости продукции, а 16- и 32–разрядные процессоры были в разы дороже, как и другие компоненты для таких ПК. Так что, как ни странно, именно в СССР, где не было никакой конкуренции и «рыночной целесообразности», без особой шумихи был впервые разработан и с 1983-84 года начал производиться недорогой 16-битный домашний компьютер.

Нередко встречается утверждение, что американская фирма Texas Instruments - очень известный в то время производитель калькуляторов, часов и другой электронной техники - ещё в 1979 году выпустила на рынок 16-битную модель TI-99/4, и именно этот ПК был первым в мире 16-разрядным домашним компьютером. Однако при этом не учитывается, что TI-99/4, как и выпущенный в 1981 году немного усовершенствованный TI-99/4A, имея действительно 16-разрядный процессор, не был полностью 16-разрядным ПК. Более того, он фактически даже и не был ПК в привычном смысле этого слова, поскольку не имел оперативной памяти пользователя! Первоначально 99/4 создавался как почти 8-битный ПК (а конструктивно - скорее игровая приставка с клавиатурой) со специальным процессором, содержащим встроенные 8 Кб ПЗУ и 256 байт ОЗУ, который был 16-битным лишь внутри, а все остальные компоненты должны были оставаться 8-битными. В результате из-за технологических трудностей разработка процессора провалилась, и TI была вынуждена использовать в этом ПК уже выпускавшийся 16-битный процессор TMS9900, а конструкция ПК стала совсем странной: процессор, 256 байт статического «сверхоперативного» ОЗУ и примерно треть ПЗУ (8 Кб из 26) были 16-битными, всё остальное - 8-битным (видеоконтроллер, ОЗУ видеоконтроллера (оно же частично заменяло отсутствующее основное пользовательское ОЗУ), внешнее ОЗУ (покупка которого обязательно требовалась для работы многих программ и устройств), основная часть встроенного ПЗУ, внешние картриджи ПЗУ). Более того, поскольку в штатном варианте ПК хранить программы в машинном коде было просто негде, разработчики 99/4 придумали специальный язык GPL, интерпретатор которого разместили в 16-битном «системном» ПЗУ, а все программы предлагалось выпускать на специальных 8-битных картриджах ПЗУ, причём не в машинных кодах, а на GPL - они должны были считываться из картриджей как набор данных (с побайтным регистровым доступом) и исполняться интерпретатором GPL! Все эти несуразности, вызванные неудачей в разработке микропроцессора с 8-битной внешней шиной и стремлением заставить пользователей покупать достаточно дорогие картриджи (специальные чипы для которых производила только TI), привели к появлению одного из самых странных ПК, в котором благородная идея использования достаточно мощного 16-битного процессора и хорошего видеоконтроллера (8-битного) была сразу обесценена отсутствием пользовательского ОЗУ, 8-битным доступом к большей части внутренней и внешней памяти, а также использованием для написания программ не ассемблера, а интерпретируемого языка GPL.

Отметим, что в самих же США компьютеры, имевшие 16-битную внутреннюю конструкцию процессора, но 8-битную внешнюю (или 32-битную внутреннюю и 16-битную внешнюю) редко называли 16-разрядными (32-разрядными) - обычно указывалось лишь то, что у них 16-битный (32-битный) процессор. И это вполне понятно - ведь в таких ПК разрядность большинства важнейших компонентов (ОЗУ, ПЗУ, контроллеров) определялась именно разрядностью внешней шины данных процессора. В советской терминологии подобные ПК обычно именовались «частично 16-разрядными» («частично 32-разрядными») или «8/16-разрядными» («16/32-разрядными»). Яркие представители такого класса ПК - IBM PC и PC/XT. Они тоже имели 16-битную внутреннюю архитектуру процессора (с 8-битной внешней шиной), но 8-битную память (ОЗУ и ПЗУ) и 8-битные контроллеры устройств (видеокарты, контроллеры дисководов и жёстких дисков, внешних портов и т.д.), что позволяло несколько уменьшить себестоимость компьютера. Однако называть такие ПК настоящими 16-битными было бы, конечно, совсем нелогично - все их компоненты (кроме внутренней структуры процессора) были 8-битными.

Советский же БК-0010 имел не только 16-разрядный процессор, но и 16-разрядный доступ ко всей оперативной и постоянной памяти, и 16-разрядные контроллеры дисплея и параллельного порта, что давало ему право называться настоящим, полностью 16-разрядным ПК.

Кстати, у персональных компьютеров IBM полностью 16-разрядная модель IBM PC/AT на базе процессора 80286 появилась лишь в 1984-м году, и стоила она в самой базовой конфигурации (без жёсткого диска, монитора и видеокарты!) от 4000 долларов.

Полная и исчерпывающая информация о развитии советской электроники. Почему советская электроника в своё время значительно превосходила иностранное "железо"? Кто из русских учёных воплощал в Intel"овских микропроцессорах советские ноу-хау?

Сколько критических стрел было выпущено за последние годы по поводу состояния нашей вычислительной техники! И что была она безнадежно отсталой (при этом обязательно ввернут про "органические пороки социализма и плановой экономики"), и что сейчас развивать ее бессмысленно, потому что "мы отстали навсегда". И почти в каждом случае рассуждения будут сопровождаться выводом, что "западная техника всегда была лучше", что "русские компьютеры делать не умеют"...

Обычно, критикуя советские компьютеры, акцентируется внимание на их ненадежности, трудности в эксплуатации, малых возможностях. Да, многие программисты "со стажем" наверняка помнят те "зависающие" без конца "Е-Эс-ки" 70-80-х годов, могут рассказать о том, как выглядели "Искры", "Агаты", "Роботроны", "Электроники" на фоне только начавших появляться в Союзе IBM PC (даже и не последних моделей) в конце 80-х — начале 90-х, упомянув о том, что такое сравнение оканчивается отнюдь не в пользу отечественных компьютеров. И это так — указанные модели действительно уступали западным аналогам по своим характеристикам.

Но эти перечисленные марки компьютеров отнюдь не являлись лучшими отечественными разработками, — несмотря на то, что были наиболее распространенными. И на самом деле советская электроника не только развивалась на мировом уровне, но и иной раз опережала аналогичную западную отрасль промышленности!

Но почему же тогда сейчас мы используем исключительно иностранное "железо", а в советское время даже с трудом "добытый" отечественный компьютер казался грудой металла по сравнению с западным аналогом? Не является ли утверждение о превосходстве советской электроники голословным?

Нет, не является! Почему? Ответ — в этой статье.

Слава наших отцов

Официальной "датой рождения" советской вычислительной техники следует считать, видимо, конец 1948 года. Именно тогда в секретной лаборатории в местечке Феофания под Киевом под руководством Сергея Александровича Лебедева (в то время — директора Института электротехники АН Украины и по совместительству руководителя лаборатории Института точной механики и вычислительной техники АН СССР) начались работы по созданию Малой Электронной Счетной Машины (МЭСМ).


Лебедевым были выдвинуты, обоснованы и реализованы (независимо от Джона фон Неймана) принципы ЭВМ с хранимой в памяти программой.


В своей первой машине Лебедев реализовал основополагающие принципы построения компьютеров, такие как:
наличие арифметических устройств, памяти, устройств ввода/вывода и управления;
кодирование и хранение программы в памяти, подобно числам;
двоичная система счисления для кодирования чисел и команд;
автоматическое выполнение вычислений на основе хранимой программы;
наличие как арифметических, так и логических операций;
иерархический принцип построения памяти;
использование численных методов для реализации вычислений.
Проектирование, монтаж и отладка МЭСМ были выполнены в рекордно короткие сроки (примерно 2 года) и проведены силами всего 17 человек (12 научных сотрудников и 5 техников). Пробный пуск машины МЭСМ состоялся 6 ноября 1950 года, а регулярная эксплуатация — 25 декабря 1951 года.



Первое детище С.А.Лебедева — МЭСМ, За пультом Л.Н.Дашевский и С.Б.Погребинский, 1948-1951гг.

В 1953 году коллективом, возглавляемым С.А.Лебедевым, была создана первая большая ЭВМ — БЭСМ-1 (от Большая Электронная Счетная Машина), выпущенная в одном экземпляре. Она создавалась уже в Москве, в Институте точной механики (сокращенно — ИТМ) и Вычислительном центре АН СССР, директором которого и стал С.А.Лебедев, а собрана была на Московском заводе счетно-аналитических машин (сокращенно — САМ).


Лебедев у одной из стоек БЭСМ-1

После комплектации оперативной памяти БЭСМ-1 усовершенствованной элементной базой ее быстродействие достигло 10000 операций в секунду — на уровне лучших в США и лучшее в Европе. В 1958 году после еще одной модернизации оперативной памяти БЭСМ, уже получившая название БЭСМ-2, была подготовлена к серийному производству на одном из заводов Союза, которое и было осуществлено в количестве нескольких десятков.

Параллельно шла работа в подмосковном Специальном конструкторском бюро № 245, которым руководил М.А.Лесечко, основанном также в декабре 1948 года приказом И.В.Сталина. В 1950-1953 гг. коллектив этого конструкторского бюро, но уже под руководством Базилевского Ю.Я. разработал цифровую вычислительную машину общего назначения "Стрела" с быстродействием в 2 тысячи операций в секунду. Эта машина выпускалась до 1956 года, а всего было сделано 7 экземпляров. Таким образом, "Стрела" была первой промышленной ЭВМ, — МЭСМ, БЭСМ существовали в то время всего в одном экземпляре.


ЭВМ "Стрела"

Вообще, конец 1948 года был крайне продуктивным временем для создателей первых советских компьютеров. Несмотря на то, что обе упомянутые выше ЭВМ были одними из лучших в мире, опять-таки параллельно с ними развивалась еще одна ветвь советского компьютеростроения — М-1, "Автоматическая цифровая вычислительная машина", которой руководил И.С.Брук.

И.С.Брук

М-1 была запущена в декабре 1951 года — одновременно с МЭСМ и почти два года была единственной в СССР действующей ЭВМ (МЭСМ территориально располагалась на Украине, под Киевом).

Однако быстродействие М-1 оказалось крайне низким — всего 20 операций в секунду, что, впрочем, не помешало решать на ней задачи ядерных исследований в институте И. В. Курчатова. Вместе с тем М-1 занимала довольно мало места — всего 9 квадратных метров (сравните со 100 кв.м. у БЭСМ-1) и потребляла значительно меньше энергии, чем детище Лебедева. М-1 стала родоначальником целого класса "малых ЭВМ", сторонником которых был ее создатель И.С.Брук. Такие машины, по мысли Брука, должны были предназначаться для небольших конструкторских бюро и научных организаций, не имеющих средств и помещений для приобретения машин типа БЭСМ.

Первая задача, решенная на М1

В скором времени М-1 была серьезно усовершенствована, и ее быстродействие достигло уровня "Стрелы" — 2 тысячи операций в секунду, в то же время размеры и энергопотребление выросли незначительно. Новая машина получила закономерное название М-2 и введена в эксплуатацию в 1953 году. По соотношению стоимости, размеров и производительности М-2 стала наилучшим компьютером Союза. Именно М-2 победила в первом международном шахматном турнире между компьютерами.

В результате в 1953 году серьезные вычислительные задачи для нужд обороны страны, науки и народного хозяйства можно было решать на трех типах вычислительных машин — БЭСМ, "Стрела" и М-2. Все эти ЭВМ — это вычислительная техника первого поколения. Элементная база — электронные лампы — определяла их большие габариты, значительное энергопотребление, низкую надежность и, как следствие, небольшие объемы производства и узкий круг пользователей, главным образом, из мира науки. В таких машинах практически не было средств совмещения операций выполняемой программы и распараллеливания работы различных устройств; команды выполнялись одна за другой, АЛУ ("арифметико-логическое устройство", блок, непосредственно выполняющий преобразования данных) простаивало в процессе обмена данными с внешними устройствами, набор которых был очень ограниченным. Объем оперативной памяти БЭСМ-2, например, составлял 2048 39-разрядных слов, в качестве внешней памяти использовались магнитные барабаны и накопители на магнитной ленте.

Сетунь — первая и единственная в мире троичная ЭВМ. МГУ. СССР.
Завод-изготовитель: Казанский завод математических машин Минрадиопрома СССР. Изготовитель логических элементов — Астраханский завод электронной аппаратуры и электронных приборов Минрадиопрома СССР. Изготовитель магнитных барабанов — Пензенский завод ЭВМ Минрадиопрома СССР. Изготовитель печатающего устройства — Московский завод пишущих машин Минприборпрома СССР.
Год окончания разработки: 1959.
Год начала выпуска: 1961.
Год прекращения выпуска: 1965.
Число выпущенных машин: 50.


В наше время «Сетунь» не имеет аналогов, но исторически сложилось, что развитие информатики ушло в русло двоичной логики.

Но более производительной была следующая разработка Лебедева — ЭВМ М-20, серийный выпуск которой начался в 1959 году.


Число 20 в названии означает быстродействие — 20 тысяч операций в секунду, объем оперативной памяти в два раза превышал ОП БЭСМ, предусматривалось также некоторое совмещение выполняемых команд. В то время это была одна из наиболее мощных и надежных машин в мире, и на ней решалось немало важнейших теоретических и прикладных задач науки и техники того времени. В машине М20 были реализованы возможности написания программ в мнемокодах. Это значительно расширило круг специалистов, которые смогли воспользоваться преимуществами вычислительной техники. По иронии судьбы компьютеров М-20 было выпущено ровно 20 штук.


ЭВМ первого поколения выпускались в СССР довольно долго. Даже в 1964 году в Пензе еще продолжала производиться ЭВМ "Урал-4", служившая для экономических расчетов.


"Урал-1"

Победной поступью

В 1948 году в США был изобретен полупроводниковый транзистор, который стал использоваться в качестве элементной базы ЭВМ. Это позволило разработать ЭВМ с существенно меньших габаритов, энергопотребления, при существенно более высокой (по сравнению с ламповыми компьютерами) надежности и производительности. Чрезвычайно актуальной стала задача автоматизации программирования, так как разрыв между временем на разработку программ и временем собственно расчета увеличивался.

Второй этап развития вычислительной техники конца 50-х — начала 60-х годов характеризуется созданием развитых языков программирования (Алгол, Фортран, Кобол) и освоением процесса автоматизации управления потоком задач с помощью самой ЭВМ, то есть разработкой операционных систем. Первые ОС автоматизировали работу пользователя по выполнению задания, а затем были созданы средства ввода нескольких заданий сразу (пакета заданий) и распределения между ними вычислительных ресурсов. Появился мультипрограммный режим обработки данных. Наиболее характерные черты этих ЭВМ, обычно называемых "ЭВМ второго поколения":
совмещение операций ввода/вывода с вычислениями в центральном процессоре;
увеличение объема оперативной и внешней памяти;
использование алфавитно-цифровых устройств для ввода/вывода данных;
"закрытый" режим для пользователей: программист уже не допускался в машинный зал, а сдавал программу на алгоритмическом языке (языке высокого уровня) оператору для ее дальнейшего пропуска на машине.

В конце 50-х годов в СССР было также налажено серийное производство транзисторов.


Отечественные транзисторы (1956 г)

Это позволило приступить к созданию ЭВМ второго поколения с большей производительностью, но меньшими занимаемой площадью и энергопотреблением. Развитие вычислительной техники в Союзе пошло едва ли не "взрывными" темпами: в короткий срок число различных моделей ЭВМ, пущенных в разработку, стало исчисляться десятками: это и М-220 — наследница лебедевской М-20, и "Минск-2" с последующими версиями, и ереванская "Наири", и множество ЭВМ военного назначения — М-40 с быстродействием 40 тысяч операций в секунду и М-50 (еще имевшие в себе ламповые компоненты). Именно благодаря последним в 1961 году удалось создать полностью работоспособную систему противоракетной обороны (во время испытаний неоднократно удалось сбить реальные баллистические ракеты прямым попаданием в боеголовку обьемом в половину кубического метра). Но в первую очередь хотелось бы упомянуть серию "БЭСМ", разрабатываемую коллективом разработчиков ИТМ и ВТ АН СССР под общим руководством С.А.Лебедева, вершиной труда которых стала ЭВМ БЭСМ-6 созданная в 1967 году. Это была первая советская ЭВМ, достигшая быстродействия в 1 миллион операций в секунду (показатель, превзойденный отечественными ЭВМ последующих выпусков только в начале 80-х годов при значительно более низкой, чем у БЭСМ-6, надежности в эксплуатации).


БЭСМ-6

Кроме высокого быстродействия (лучший показатель в Европе и один из лучших в мире), структурная организация БЭСМ-6 отличалась целым рядом особенностей, революционных для своего времени и предвосхитивших архитектурные особенности ЭВМ следующего поколения (элементную базу которых составляли интегральные схемы). Так, впервые в отечественной практике и полностью независимо от зарубежных ЭВМ был широко использован принцип совмещения выполнения команд (до 14 машинных команд могли одновременно находиться в процессоре на разных стадиях выполнения). Этот принцип, названный главным конструктором БЭСМ-6 академиком С.А.Лебедевым принципом "водопровода", стал впоследствии широко использоваться для повышения производительности универсальных ЭВМ, получив в современной терминологии название "конвейера команд".

БЭСМ-6 выпускалась серийно на московском заводе САМ с 1968 по 1987 год (всего было выпущено 355 машин) — своего рода рекорд! Последняя БЭСМ-6 была демонтирована уже в наши дни — в 1995 году на московском вертолетном заводе Миля. БЭСМ-6 были оснащены крупнейшие академические (например, Вычислительный Центр АН СССР, Обьединенный Институт Ядерных Исследований) и отраслевые (Центральный Институт Авиационного Машиностроения — ЦИАМ) научно-исследовательские институты, заводы и конструкторские бюро.


Интересна в этой связи статья куратора Музея вычислительной техники в Великобритании Дорона Свейда о том, как он покупал в Новосибирске одну из последних работающих БЭСМ-6. Заголовок статьи говорит сам за себя: "Российская серия суперкомпьютеров БЭСМ, разрабатывавшаяся более чем 40 лет тому назад, может свидетельствовать о лжи Соединенных Штатов, объявлявших технологическое превосходство в течение лет холодной войны".

Информация для специалистов

Работа модулей оперативной памяти, устройства управления и арифметико-логического устройства в БЭСМ-6 осуществлялась параллельно и асинхронно, благодаря наличию буферных устройств промежуточного хранения команд и данных. Для ускорения конвейерного выполнения команд в устройстве управления были предусмотрены отдельная регистровая память хранения индексов, отдельный модуль адресной арифметики, обеспечивающий быструю модификацию адресов с помощью индекс-регистров, включая режим стекового обращения.

Ассоциативная память на быстрых регистрах (типа cache) позволяла автоматически сохранять в ней наиболее часто используемые операнды и тем самым сократить число обращений к оперативной памяти. "Расслоение" оперативной памяти обеспечивало возможность одновременного обращения к разным ее модулям из разных устройств машины. Механизмы прерывания, защиты памяти, преобразования виртуальных адресов в физические и привилегированный режим работы для ОС позволили использовать БЭСМ-6 в мультипрограммном режиме и режиме разделения времени. В арифметико-логическом устройстве были реализованы ускоренные алгоритмы умножения и деления (умножение на четыре цифры множителя, вычисление четырех цифр частного за один такт синхронизации), а также сумматор без цепей сквозного переноса, представляющий результат операции в виде двухрядного кода (поразрядных сумм и переносов) и оперирующий с входным трехрядным кодом (новый операнд и двухрядный результат предыдущей операции).

ЭВМ БЭСМ-6 имела оперативную память на ферритовых сердечниках — 32 Кб 50-разрядных слов, объем оперативной памяти увеличивался при последующих модификациях до 128 Кб.

Обмен данными с внешней памятью на магнитных барабанах (в дальнейшем и на магнитных дисках) и магнитных лентах осуществлялся параллельно по семи высокоскоростным каналам (прообраз будущих селекторных каналов). Работа с остальными периферийными устройствами (поэлементный ввод/вывод данных) осуществлялась программами-драйверами операционной системы при возникновении соответствующих прерываний от устройств.

Технико-эксплуатационные характеристики:
Среднее быстродействие — до 1 млн. одноадресных команд/с
Длина слова — 48 двоичных разрядов и два контрольных разряда (четность всего слова должна была быть "нечет". Таким образом, можно было отличать команды от данных — у одних четность полуслов была "чет-нечет", а у других — "нечет-чет". Переход на данные или затирание кода ловилось элементарно, как только происходила попытка выполнить слово с данными)
Представление чисел — с плавающей запятой
Рабочая частота — 10 МГц
Занимаемая площадь — 150-200 кв. м
Потребляемая мощность от сети 220 В/50Гц — 30 КВт (без системы воздушного охлаждения)

Использование этих элементов в сочетании с оригинальными структурными решениями позволило обеспечить уровень производительности до 1 млн. операций в секудну при работе в 48-разрядном режиме с плавающей запятой, что является рекордным по отношению к сравнительно небольшому количеству полупроводниковых элементов и их быстродействию (около 60 тыс. транзисторов и 180 тыс. диодов и частоте 10 МГц).

Архитектура БЭСМ-6 характеризуется оптимальным набором арифметических и логических операций, быстрой модификацией адресов с помощью индекс-регистров (включая режим стекового обращения), механизмом расширения кода операций (экстракоды).

При создании БЭСМ-6 были заложены основные принципы системы автоматизации проектирования ЭВМ (САПР). Компактная запись схем машины формулами булевой алгебры явилась основой ее эксплуатационной и наладочной документации. Документация для монтажа выдавалась на завод в виде таблиц, полученных на инструментальной ЭВМ.

Создателями БЭСМ-6 были В.А.Мельников, Л.Н.Королев, В.С.Петров, Л.А.Теплицкий — руководители; А.А.Соколов, В.Н.Лаут, М.В.Тяпкин, В.Л.Ли, Л.А.Зак, В.И.Смирнов, А.С.Федоров, О.К.Щербаков, А.В.Аваев, В.Я.Алексеев, О.А.Большаков, В.Ф.Жиров, В.А.Жуковский, Ю.И.Митропольский, Ю.Н.Знаменский, В.С.Чехлов, общее руководство осуществлял С.А.Лебедев.

В 1966 году над Москвой была развернута система противоракетной обороны на базе созданной группами С.А.Лебедева и его коллеги В.С.Бурцева ЭВМ 5Э92б с производительностью 500 тысяч операций в секунду, просуществовавшая до настоящего времени (в 2002 году должна быть демонтирована в связи с сокращением РВСН).


Была также создана материальная база для развертывания ПРО над всей территорией Советского Союза, однако впоследствии согласно условиям договора ПРО-1 работы в этом направлении были свернуты. Группа В.С.Бурцева приняла активное участие в разработке легендарного противосамолетного зенитного комплекса С-300, создав в 1968 году для нее ЭВМ 5Э26, отличавшуюся малыми размерами (2 кубических метра) и тщательнейшим аппаратным контролем, отслеживавшим любую неверную информацию. Производительность ЭВМ 5Э26 была равна аналогичной у БЭСМ-6 — 1 миллион операций в секунду.


5Э261 — первая в СССР мобильная многопроцессорная высокопроизводительная управляющая система.

Предательство

Вероятно, самым звездным периодом в истории советской вычислительной техники была середина шестидесятых годов. В СССР тогда действовало множество творческих коллективов. Институты С.А.Лебедева, И.С.Брука, В.М.Глушкова — только крупнейшие из них. Иногда они конкурировали, иногда дополняли друг друга. Одновременно выпускалось множество различных типов машин, чаще всего несовместимых друг с другом (разве что за исключением машин, разработанных в одном и том же институте), самого разнообразного назначения. Все они были спроектированы и сделаны на мировом уровне и не уступали своим западным конкурентам.

Многообразие выпускавшихся ЭВМ и их несовместимость друг с другом на программном и аппаратном уровнях не удовлетворяло их создателей. Необходимо было навести мало-мальский порядок во всем множестве производимых компьютеров, например, взяв какой-либо из них за некий стандарт. Но...

В конце 60-х руководством страны было принято решение, имевшее, как показал ход дальнейших событий, катастрофические последствия: о замене всех разнокалиберных отечественных разработок среднего класса (их насчитывалось с полдесятка — "Мински", "Уралы", разные варианты архитектуры М-20 и пр.) — на Единое Семейство ЭВМ на базе архитектуры IBM 360, — американского аналога. На уровне Минприбора не так громко было принято аналогичное решение в отношении мини-ЭВМ. Потом, во второй половине 70-х годов, в качестве генеральной линии для мини- и микро-ЭВМ была утверждена архитектура PDP-11 также иностранной фирмы DEC. В результате производители отечественных ЭВМ были принуждены копировать устаревшие образцы IBM-вской вычислительной техники. Это было начало конца.


Вот оценка члена-корреспондента РАН Бориса Арташесовича Бабаяна:

"Потом наступил второй период, когда был организован ВНИИЦЭВТ. Я считаю, что это критический этап развития отечественной вычислительной техники. Были расформированы все творческие коллективы, закрыты конкурентные разработки и принято решение всех загнать в одно "стойло". Отныне все должны были копировать американскую технику, причем отнюдь не самую совершенную. Гигантский коллектив ВНИИЦЭВТ копировал IBM, а коллектив ИНЭУМ — DEC."

Никоим образом не стоит думать, что коллективы разработчиков ЕС ЭВМ выполняли свою работу плохо. Напротив, создавая вполне работоспособные компьютеры (хоть и не очень надежные и мощные), подобные западным аналогам, они справились с этой задачей блестяще, — учитывая то, что производственная база в СССР отставала от западной. Ошибочной была именно ориентация всей отрасли на "подражание Западу", а не на развитие оригинальных технологий.

К сожалению, сейчас неизвестно, кто конкретно в руководстве страны принял преступное решение о сворачивании оригинальных отечественных разработок и развитии электроники в направлении копирования западных аналогов. Обьективных причин для такого решения не было никаких.

Так или иначе, но с начала 70-х годов разработка малых и средних средств вычислительной техники в СССР начала деградировать. Вместо дальнейшего развития проработанных и испытанных концепций компьютеростроения огромные силы институтов вычислительной техники страны стали заниматься "тупым", да к тому же еще и полузаконным копированием западных компьютеров. Впрочем, законным оно быть не могло — шла "холодная война", и экспорт современных технологий "компьютеростроения" в СССР в большинстве западных стран был попросту законодательно запрещен.

Вот еще одно свидетельство Б.А.Бабаяна:

"Расчет был на то, что можно будет наворовать много матобеспечения — и наступит расцвет вычислительной техники. Этого, конечно, не произошло. Потому что после того, как все были согнаны в одно место, творчество кончилось. Образно говоря, мозги начали сохнуть от совершенно нетворческой работы. Нужно было просто угадать, как сделаны западные, в действительности устаревшие, вычислительные машины. Передовой уровень известен не был, передовыми разработками не занимались, была надежда на то, что хлынет матобеспечение… Вскоре стало ясно, что матобеспечение не хлынуло, уворованные куски не подходили друг к другу, программы не работали. Все приходилось переписывать, а то, что доставали, было древнее, плохо работало. Это был оглушительный провал. Машины, которые делались в этот период, были хуже, чем машины, разрабатывавшиеся до организации ВНИИЦЭВТа..."

Cамое главное — путь копирования заокеанских решений оказался гораздо сложнее, чем это предполагалось ранее. Для совместимости архитектур требовалась совместимость на уровне элементной базы, а ее-то у нас и не было. В те времена отечественная электронная промышленность также вынужденно встала на путь клонирования американских компонентов, — для обеспечения возможности создания аналогов западных ЭВМ. Но это было очень непросто.

Можно было достать и скопировать топологию микросхем, узнать все параметры электронных схем. Однако это не давало ответа на главный вопрос — как их сделать. По сведениям одного из экспертов российского МЭП, работавшего в свое время генеральным директором крупного НПО, преимущество американцев всегда заключалось в огромных инвестициях в электронное машиностроение. В США были и остаются совершенно секретными не столько технологические линии производства электронных компонентов, сколько оборудование по созданию этих самых линий. Результатом такой ситуации стало то, что созданные в начале 70-х годов советские микросхемы — аналоги западных были похожи на американо-японские в функциональном плане, но не дотягивали до них по техническим параметрам. Поэтому платы, собранные по американским топологиям, но с нашими компонентами, оказывались неработоспособными. Приходилось разрабатывать собственные схемные решения.

В цитированной выше статье Свейда делается вывод: "БЭСМ-6 была, по общему мнению, последним оригинальным русским компьютером, что был спроектирован наравне со своим западным аналогом" . Это не совсем верно: после БЭСМ-6 была серия "Эльбрус": первая из машин этой серии "Эльбрус-Б" была микроэлектронной копией БЭСМ-6, предоставляла возможность работать в системе команд БЭСМ-6 и использовать программное обеспечение, написанное для нее.

Однако общий смысл вывода верен: из-за приказа некомпетентных или сознательно вредящих деятелей правящей верхушки Советского Союза того времени советской вычислительной технике был закрыт путь на вершину мирового Олимпа. Которой она вполне могла достичь — научный, творческий и материальный потенциал вполне позволяли это сделать.

Вот, к примеру, немного из личных впечатлений одного из авторов статьи:

"В период моей работы в ЦИАМ (1983 — 1986 гг.) уже происходил переход смежников — заводов и КБ авиапрома — на ЕС-овскую технику. В связи с этим руководство института начало заставлять руководителей подразделений переходить на только что установленную в институте ЕС-1060 — клон западного IBM PC. Разработчики устроили саботаж этого решения, пассивный, а кое-кто и активный, предпочитая использовать старую добрую БЭСМ-6 пятнадцатилетней давности. Дело в том, что работать на ЕС-1060 в дневное время было практически невозможно — постоянные "зависы", скорость прохождения заданий крайне медленная; в то же время любое зависание БЭСМ-6 рассматривалось как ЧП, настолько они были редки."

Однако отнюдь не все оригинальные отечественные разработки были свернуты. Как уже говорилось, коллектив В.С.Бурцева продолжал работу над серией ЭВМ "Эльбрус", и в 1980 году ЭВМ "Эльбрус-1" с быстродействием до 15 миллионов операций в секунду был запущен в серийное производство. Симметричная многопроцессорная архитектура с общей памятью, реализация защищенного программирования с аппаратными типами данных, суперскалярность процессорной обработки, единая операционная система для многопроцессорных комплексов — все эти возможности, реализованные в серии "Эльбрус", появились раньше, чем на Западе. В 1985 году следующая модель этой серии, "Эльбрус-2", выполнял уже 125 миллионов операций в секунду. "Эльбрусы" работали в целом ряде важных систем, связанных с обработкой радиолокационной информации, на них считали в номерных Арзамасе и Челябинске, а многие компьютеры этой модели до сих пор обеспечивают функционирование систем противоракетной обороны и космических войск.

Весьма интересной особенностью "Эльбрусов" являлся тот факт, что системное программное обеспечение для них создавалось на языке высокого уровня — Эль-76, а не традиционном ассемблере. Перед исполнением код на языке Эль-76 переводился в машинные команды с помощью аппаратного, а не программного обеспечения.

С 1990 года выпускался также "Эльбрус 3-1", отличавшийся модульностью конструкции и предназначавшийся для решения больших научных и экономических задач, в том числе моделирования физических процессов. Его быстродействие достигло 500 миллионов операций в секунду (на некоторых командах). Всего было произведено 4 экземпляра этой машины.

С 1975 года группой И.В.Прангишвили и В.В.Резанова в научно-производственном обьединении "Импульс" начал разрабатываться вычислительный комплекс ПС-2000 с быстродействием в 200 миллионов операций в секунду, пущенный в производство в 1980 году и применявшийся в основном для обработки геофизических данных, — поиска новых месторождений полезных ископаемых. В этом комплексе максимально использовались возможности параллельного исполнения команд программы, что достигалось хитроумно спроектированной архитектурой.

Большие советские компьютеры, вроде того же ПС-2000, во многом даже превосходили своих зарубежных конкурентов, но стоили гораздо дешевле — так, на разработку ПС-2000 было затрачено всего 10 миллионов рублей (а его использование позволило получить прибыль в 200 миллионов рублей). Однако их сферой применения были "крупномасштабные" задачи — та же противоракетная оборона или обработка космических данных. Развитие средних и малых ЭВМ в Союзе предательством кремлевской верхушки было заторможено всерьез и надолго. И именно поэтому тот прибор, что стоит у вас на столе и о котором рассказывается в нашем журнале, сделан в Юго-Восточной Азии, а не в России.

Катастрофа

С 1991 года для российской науки настали тяжелые времена. Новая власть России взяла курс на уничтожение российской науки и оригинальных технологий. Прекратилось финансирование подавляющего большинства научных проектов, вследствие разрушения Союза прервались взаимосвязи заводов-производителей ЭВМ, оказавшихся в разных государствах, и эффективное производство стало невозможным. Многие разработчики отечественной вычислительной техники были вынуждены работать не по специальности, теряя квалификацию и время. Единственный экземпляр разработанного еще в советское время компьютера "Эльбрус-3", в два раза более быстрого, чем самая производительная американская супермашина того времени Cray Y-MP, в 1994 году был разобран и пущен под пресс.



"Эльбрус-3"

Некоторые их создателей советских компьютеров уехали за границу. Так, в настоящее время ведущим разработчиком микропроцессоров фирмы Intel является Владимир Пентковский, получивший образование в СССР и работавший в ИТМиВТ — Институте Точной Механики и Вычислительной Техники имени С.А.Лебедева. Пентковский принимал участие в разработке упоминавшихся выше компьютеров "Эльбрус-1" и "Эльбрус-2", а затем возглавил разработку процессора для "Эльбруса-3" — Эль-90. Вследствие целенаправленной политики уничтожения российской науки, ведущейся правящими кругами РФ под влиянием Запада, финансирование проекта "Эльбрус" прекратилось, и Владимир Пентковский был вынужден эмигрировать в США и устроиться на работу в корпорацию Intel. Вскоре он стал ведущим инженером корпорации и под его руководством в 1993 году в Intel разработали процессор Pentium, по слухам, названный так именно в честь Пентковского.

Пентковский воплощал в Intel"овских процессорах те советские ноу-хау, которые знал сам, многое додумывая в процессе разработки, и к 1995 году фирма Intel выпустила более совершенный процессор Pentium Pro, который уже вплотную приблизился по своим возможностям к российскому микропроцессору 1990 года Эль-90, хоть и не догнал его. В настоящее время Пентковский разрабатывает следующие поколения процессоров Intel. Так что процессор, на котором, возможно, работает ваш компьютер, сделан именно нашим соотечественником и мог бы быть российского производства, если бы не события после 1991 года.

Многие НИИ переключились на создание крупных вычислительных систем на основе импортных компонентов. Так, в НИИ “Квант” под руководством В.К.Левина ведется раззработка вычислительных системы МВС-100 и МВС-1000, основанных на процессорах Alpha 21164 (производства DEC-Compaq). Однако приобретение такого оборудования затруднено действующим эмбарго на экспорт в Россию высоких технологий, возможность же применения подобных комплексов в оборонных системах крайне сомнительна, — никто не знает, сколько в них можно найти "жучков", активирующихся по сигналу и выводящих систему из строя.

На рынке же персональных ЭВМ отечественные компьютеры отсутствуют полностью. Максимум, на что идут российские разработчики — это сборка компьютеров из комплектующих и создание отдельных устройств, например, материнских плат, — опять-таки из готовых компонентов, при этом размещая заказы на производство на заводах Юго-Восточной Азии. Однако и таких разработок весьма мало (можно назвать фирмы "Аквариус", "Формоза"). Развитие же линии "ЕС" практически остановилось, — зачем создавать свои аналоги, когда проще и дешевле купить оригиналы?

Разумеется, не все еще потеряно. Остались и описания технологий, иной раз даже по
прошествии десяти лет превосходящих западные, и действующие образцы. К счастью, не все разработчики отечественной вычислительной техники уехали за границу или умерли. Так что шанс еще есть.

А будет ли он реализован — зависит уже от нас.

Владимир Сосновский, Антон Орлов
]]>

Сегодняшние персональные компьютеры сильно отличаются от массивных, неуклюжих устройств, возникших во время Второй мировой войны, и разница не только в их размерах. «Отцы» и «деды» современных десктопов и лэптопов не умели многое из того, с чем играючи справляются современные машины. Однако самый первый компьютер в мире стал прорывом в области науки и техники . Устраивайтесь поудобнее перед монитором, и мы расскажем о том, как зарождалась эпоха ПК.

Кто создал самый первый компьютер в мире

В 40-е годы прошлого столетия существовали сразу несколько устройств, которые могут претендовать на звание первого компьютера.

Z3

Конрад Цузе

Ранний компьютер, созданный немецким инженером Конрадом Цузе, который работал в полной изоляции от разработок других ученых. Он имел отдельный блок памяти и отдельную консоль для ввода данных. А в качестве их носителя выступала восьмидорожечная перфокарта, изготовленная Цузе из 35 мм кинопленки.

В машине было 2600 телефонных реле и ее можно было свободно программировать в двоичном коде с плавающей точкой. Аппарат Z3 использовался для аэродинамических расчетов, но был уничтожен при бомбежке Берлина в конце 1943 года. Цузе руководил реконструкцией своего детища в 1960-х годах, и сейчас эта программируемая машина демонстрируется в музее Мюнхена.

Устройство «Марк 1» задуманное профессором Говардом Эйкеном и выпущенное IBM в 1941 году, представляло собой первый в Америке программируемый компьютер. Машина стоила полмиллиона долларов, и применялась для разработки оборудования для ВМФ США, такого как торпеды и средства подводного обнаружения. Также «Марк 1» использовали при разработке имплозионных устройств для атомной бомбы.

Именно «Марк 1» можно назвать самым первым компьютером в мире. Его характеристики в отличие от немецкого Z3, позволяли выполнять вычисления в автоматическом режиме, не требуя вмешательства человека в процесс работы.

Atanasoff-Berry Computer (ABC)

В 1939 году профессор Джон Винсент Атанасов получил средства для создания машины, названной Atanasoff-Berry Computer (ABC). Она была спроектирована и собрана Атанасовым и аспирантом Клиффордом Берри в 1942 году. Однако устройство ABC не имело широкой известности до патентного спора, связанного с изобретением компьютера. Он был разрешен лишь в 1973 году, когда было доказано, что соавтор ENIAC Джон Мокли видел компьютер ABC вскоре после того, как тот стал функциональным.

Юридический результат судебных тяжб был знаковым: Атанасов был объявлен инициатором нескольких основных компьютерных идей, но компьютер как концепция был объявлен непатентоспособным и, следовательно, свободно открыт для всех разработчиков. Полномасштабная рабочая копия ABC была завершена в 1997 году, доказав, что машина ABC функционировала так, как утверждал Атанасов.

ENIAC

ENIAC

ENIAC разрабатывался двумя учеными из Пенсильванского университета — Джоном Эккертом и Джоном Мокли. Он мог решать «широкий спектр числовых задач» путем перепрограммирования. Хотя машина была предъявлена публике уже после войны, в 1946 году, она была важна для расчетов во время последующих конфликтов, таких как «Холодная война» и Корейская война. Она использовалась для вычислений при создании водородной бомбы, инженерных расчетов и создания таблиц стрельбы. А также делала прогнозы погоды в СССР, чтобы американцы знали, куда могут выпасть радиоактивные осадки в случае ядерной войны.

В отличие от «Марк 1» с его электромеханическими реле, в «ЭНИАКе» были вакуумные лампы. Считается, что ENIAC провел больше расчетов за свои десять лет эксплуатации, чем все человечество до этого времени.

EDSAC

EDSAC

Первый компьютер с хранимым в памяти программным обеспечением назывался EDSAC. Он был собран в 1949 году в Кембриджском университете. Проект по его созданию возглавлял профессор Кембриджа и директор Лаборатории вычислительных исследований Кембриджа Морис Уилкс.

Одним из основных достижений в программировании было использование Уилксом библиотеки коротких программ под названием «подпрограммы». Она хранилась на перфокартах и ​​использовалась для выполнения общих повторяющихся вычислений в рамках программы lager.

Как выглядел первый компьютер в мире

Американский «Марк 1» был огромен, занимая в длину свыше 17 метров, а в высоту — свыше 2.5 метра. Машина, в оболочке из стекла и нержавеющей стали, весила 4,5 тонны, а общая протяженность ее соединительных проводов чуть-чуть не дотягивала до 800 км. За синхронизацию основных вычислительных модулей отвечал пятнадцатиметровый вал, который приводил в движение электродвигатель мощностью 4 кВт.

Марк 1 в музее IBM

Еще тяжелее, чем «Марк 1», был «ЭНИАК». Он весил 27 тонн, и требовал 174 кВт электроэнергии. Когда его включали, городские огни тускнели. Машина не имела ни клавиатуры ни монитора, занимала площадь в 135 кв.м и была обвита километрами проводов. Чтобы получить представление о внешнем виде «ЭНИАКа» представьте себе длинный ряд металлических шкафов, которые сверху донизу заставлены лампочками. Поскольку качественного охлаждения у компьютера тогда еще не было, в помещении, где он находился, было очень жарко, и «ЭНИАК» давал сбои.

ENIAC

В СССР не желали отставать от Запада и вели свои разработки по созданию ЭВМ. Результатом усилий советских ученых стала (МЭСМ). Ее первый запуск состоялся в 1950 году. В МЭСМ использовались 6 тысяч ламп, она занимала площадь в 60 кв. м и требовала для работы мощности до 25 кВт.

МЭСМ

Устройство могло выполнять до 3 тысяч операций в секунду. МЭСМ применялась для сложных научных вычислений, затем ее использовали как учебное пособие, а в 1959 году машину разобрали.

В 1952 году у МЭСМ появилась старшая сестра — (БЭСМ). Количество электронных ламп в ней возросло до 5 тысяч, выросло и количество операций в секунду — от 8 до 10 тысяч.

БЭСМ

Первый в мире коммерческий компьютер

Представленный в США в 1951 году, можно назвать первым компьютером, предназначенным для коммерческого использования.

Он прославился после того, как использовал данные опроса 1% населения, имеющего право голоса, чтобы правильно предсказать, что генерал Дуайт Эйзенхауэр выиграет выборы 1952 года. Когда люди поняли возможности компьютерной обработки данных, многие предприятия начали приобретать эту машину для своих нужд.

Самый первый персональный компьютер в мире

Впервые термин «персональный компьютер» был применен к творению итальянского инженера Пьера Джорджио Перотто под названием Programma 101 . Выпустила его фирма Olivetti.

Programma 101

Стоило устройство 3200 долларов и разошлось тиражом около 44 000 экземпляров. Десять штук купило NASA, чтобы использовать для расчетов посадки Apollo 11 на Луну в 1969 году. Сеть ABC (American Broadcasting Company) использовала Programma 101 для прогнозирования президентских выборов 1968 года. Американские военные использовали его для планирования своих операций во время войны во Вьетнаме. Он также закупался для школ, больниц и правительственных учреждениях и отмечал начало эпохи быстрого развития и продаж ПК.

Первый домашний компьютер массового производства за рубежом

В 1975 году в одном из выпусков журнала « Популярная электроника» появилась статья о новом компьютерном наборе — Altair 8800. В течение нескольких недель после появления устройства клиенты наводнили его производителя, компанию MITS, заказами. Машина была оснащена 256-байтовой памятью (расширяемой до 64 Кб) и универсальной интерфейсной шиной, которая превратилась в стандарт «S-100», широко используемый в любительских и персональных компьютерах той эпохи.

«Альтаир 8800» можно было купить за 397 долларов. После покупки владельцу-радиолюбителю нужно было самостоятельно паять и проверять работоспособность собранных узлов. На этом трудности не заканчивались, предстояло еще освоить написание программ с помощью нулей и единиц. У Altair 8800 не было клавиатуры или монитора, жесткого диска и дисковода. Чтобы ввести нужную программу пользователь щелкал тумблерами на передней панели устройства. А проверка результатов осуществлялась путем наблюдения за лампочками, мигающими на передней панели.

А в 1976 году «на свет» появился первый компьютер Apple , разработанный и изготовленный вручную Стивом Возняком и рекламируемый его другом как первый продукт компании Apple Computer Company. Apple 1 считается первым ПК, поставляемым в готовом виде.

Apple 1

На самом деле у устройства не было ни монитора, ни клавиатуры (предусматривалась возможность их подключения). Зато была полностью укомплектованная монтажная плата, на которой находилось 30 микросхем. У «Альтаир 8800» и других поступивших на рынок устройств и этого не было, их надо было собирать из набора. Первоначально у Apple 1 была почти «адская» цена в 666, 66 долларов, однако год спустя она была снижена до 475 долларов. Позже была выпущена дополнительная плата, которая позволяла записывать данные на кассетный магнитофон. Она стоила 75 долларов.

Первый домашний компьютер массового производства в СССР

С 80-х годов XX века в Болгарии начали выпускать компьютер под названием «Правец». Это был клон второй версии Apple. Еще одним клоном, входящим в линейку «Правец», был «советский» IBM PC, базировавшийся на процессорах Intel 8088 и 8086. Более поздним клоном Oric Atmos была «домашняя» модель «Правец 8D» в небольшом корпусе и со встроенной клавиатурой. Она выпускалась с 1985 по 1992 годы. Компьютеры «Правец» стояли во многих школах Советского Союза.

Желающие собрать себе домашний компьютер могли воспользоваться инструкциями в журнале «Радио» 1982-83 гг. и воспроизвести модель под названием «Микро-80». Она базировалась на микропроцессоре КР580ВМ80, аналогичном Intel i8080.

В 1984 году в Советском Союзе появился компьютер «Агат», достаточно мощный по сравнению с западными моделями. Объем ОЗУ составлял 128 КБ, что вдвое превышало объем оперативной памяти у моделей Apple начала 80-х годов двадцатого века. Компьютер выпускался в нескольких модификациях, имел внешнюю клавиатуру с 74 клавишами и черно-белый либо цветной экран.

Производство «Агатов» шло до 1993 года.

Компьютеры современности

В наши дни современные компьютерные технологии меняются очень быстро. современности в миллиарды раз превосходят своих предков. Каждая компания хочет удивить и так пресыщенных пользователей, и до сих пор многие преуспевают в этом. Вот лишь некоторые из основных тем за последние годы:

  • Ноутбук, оказавший важное влияние на развитие индустрии: Apple Macbook (2006 год).
  • Смартфон, оказавший важное влияние на развитие индустрии: Apple iPhone (2007 год).
  • Планшет, оказавший важное влияние на развитие индустрии: Apple iPad (2010 год).
  • Первые «умные часы»: Pulsar Time Computer (1972 год). Их можно увидеть на руке Джеймса Бонда в боевике «Живи и дай умереть» 1973 года.

И, конечно же, различные игровые консоли: Playstation, Xbox, Nintendo и т. д.

Мы живем в интересное время (хотя это и звучит как китайское проклятие). И кто знает, что ждет в ближайшем будущем. Нейронные компьютеры? Квантовые компьютеры? Поживем-увидим.

Первая советская электронно-вычислительная машина была сконструирована и введена в эксплуатацию недалеко от города Киева. С появлением первого компьютера в Союзе и на территории континентальной Европы связывают имя Сергея Лебедева (1902-1974 гг.). В 1997 году ученая мировая общественность признала его пионером вычислительной техники, и в том же году Международное компьютерное общество выпустило медаль с надписью: «С.А. Лебедев - разработчик и конструктор первого компьютера в Советском Союзе. Основоположник советского компьютеростроения». Всего при непосредственном участии академика было создано 18 электронно-вычислительных машин, 15 из которых переросли в серийное производство.

Сергей Алексеевич Лебедев - основоположник вычислительной техники в СССР

В 1944-м, после назначения на должность директора Института энергетики АН УССР, академик с семьей переезжает в Киев. До создания революционной разработки остается еще долгих четыре года. Данный институт специализировался по двум направлениям: электротехническое и теплотехническое. Волевым решением директор разделяет два не совсем совместимых научных направления и возглавляет Институт электроники. Лаборатория института переезжает в предместье Киева (Феофания, бывший монастырь). Именно там и воплощается в жизнь давнишняя мечта профессора Лебедева - создать электронно-цифровую счетную машину.

Первый компьютер СССР

В 1948 году модель первого отечественного компьютера была собрана. Устройство занимало почти все пространство комнаты площадью в 60 м 2 . В конструкции было так много элементов (особенно нагревательных), что при первом запуске машины выделилось столько тепла, что пришлось даже разобрать часть кровли. Первую модель советского компьютера назвали просто - Малая Электронная Счетная Машина (МЭСМ). Она могла производить до трех тысяч счетно-вычислительных операций в минуту, что по меркам того времени было заоблачно много. В МЭСМ был применен принцип электронной ламповой системы, который уже апробирован западными коллегами («Колосс Марк 1» 1943 г., «ЭНИАК» 1946 г.).

Всего в МЭСМ было использовано порядка 6 тысяч различных электронных ламп, устройству требовалась мощность в 25 кВт. Программирование происходило за счет ввода данных с перфолент или в результате набора кодов на штекерном коммутаторе. Вывод данных производился посредством электромеханического печатающего устройства или путем фотографирования.

Параметры МЭСМ:

  • двоичная с фиксированной запятой перед старшим разрядом система счета;
  • 17 разрядов (16 плюс один на знак);
  • емкость ОЗУ: 31 для чисел и 63 для команд;
  • емкость функционального устройства: аналогичная ОЗУ;
  • трехадресная система команд;
  • производимые вычисления: четыре простейших операции (сложение, вычитание, деление, умножение), сравнение с учетом знака, сдвиг, сравнение по абсолютной величине, сложение команд, передача управления, передача чисел с магнитного барабана и пр.;
  • вид ПЗУ: триггерные ячейки с вариантом использования магнитного барабана;
  • система ввода данных: последовательная с контролем через систему программирования;
  • моноблочное универсальное арифметическое устройство параллельного действия на триггерных ячейках.

Несмотря на максимально возможную автономную работу МЭСМ, определение и устранение неполадок все же происходило вручную или посредством полуавтоматического регулирования. Во время испытаний компьютеру было предложено решить несколько задач, после чего разработчики заключили, что машина способна производить вычисления, неподвластные человеческому разуму. Публичная демонстрация возможностей малой электронной счетной машины произошла в 1951 году. С этого момента устройство считается введенным в эксплуатацию первым советским электронно-вычислительным аппаратом. Над созданием МЭСМ под руководством Лебедева работало всего 12 инженеров, 15 техников и монтажниц.

Несмотря на ряд существенных ограничений, первый компьютер, сделанный в СССР, работал в соответствии с требованиями своего времени. По этой причине машине академика Лебедева было доверено проводить расчеты по решению научно-технических и народно-хозяйственных задач. Опыт, накопленный в процессе разработки машины, был использован при создании БЭСМ, а сама МЭСМ рассматривалась в качестве действующего макета, на котором отрабатывались принципы построения большой ЭВМ. Первый «блин» академика Лебедева на пути развития программирования и разработок широкого круга вопросов вычислительной математики не оказался комом. Машину применяли как для текущих задач, так и рассматривали прототипом более усовершенствованных аппаратов.

Успех Лебедева был высоко оценен в высших эшелонах власти, и в 1952 году академик получил назначение на руководящую должность института в Москве. Малая электронная счетная машина, произведенная в единичном экземпляре, использовалась до 1957 года, после чего устройство демонтировали, разобрали на составляющие и поместили в лабораториях Политехнического института в Киеве, где части МЭСМ служили студентам в лабораторных исследованиях.

ЭВМ серии «М»

Пока академик Лебедев работал над электронно-вычислительным устройством в Киеве, в Москве образовывалась отдельная группа электротехников. Сотрудники Энергетического института имени Кржижановского Исаака Брука (электротехник) и Башира Рамеева (изобретатель) в 1948 году подают в патентное бюро заявку на регистрацию проекта собственной ЭВМ. В начале 50-х Рамеев становится руководителем отдельной лаборатории, где и предназначалось появиться этому устройству. Буквально за один год разработчики собирают первый прототип машины М-1. По всем техническим параметрам это было устройство, намного уступающее МЭСМ: всего 20 операций в секунду, тогда как машина Лебедева показывала результат в 50 операций. Неотъемлемым преимуществом М-1 были ее габариты и энергопотребление. В конструкции использовано всего 730 электрических ламп, они требовали 8 кВт, а весь аппарат занимал лишь 5 м 2 .

В 1952-м году появилась М-2, производительность которой выросла в сто раз, а число ламп увеличилось лишь вдвое. Этого удалось достичь за счет использования управляющих полупроводниковых диодов. Но инновации требовали больше энергии (М-2 потребляла 29 кВт), да и площадь конструкция заняла в четыре раза больше, чем предшественница (22 м 2). Счетных возможностей данного устройства вполне хватало для реализации ряда вычислительных операций, но серийное производство так и не началось.

«Малютка» ЭВМ М-2

Модель М-3 снова стала «малюткой»: 774 электронные лампы, потребляющие энергию в размере 10 кВт, площадь - 3 м 2 . Соответственно, уменьшились и вычислительные возможности: 30 операций в секунду. Но для решения многих прикладных задач этого вполне было достаточно, поэтому М-3 выпускалась небольшой партией, 16 штук.

В 1960 году разработчики довели производительность машины до 1000 операций в секунду. Данную технологию заимствовали далее для электронно-вычислительных машин «Арагац», «Раздан», «Минск» (произведены в Ереване и в Минске). Эти проекты, реализованные параллельно с ведущими московскими и киевскими программами, показали серьёзные результаты уже позже, в период перехода ЭВМ на транзисторы.

«Стрела»

Под руководством Юрия Базилевского в Москве создается ЭВМ «Стрела». Первый образец устройства был завершен в 1953 году. «Стрела» (как и М-1) содержала память на электронно-лучевых трубках (МЭСМ использовала триггерные ячейки). Проект данной модели компьютера был настолько удачным, что на Московском заводе счетно-аналитических машин началось серийное производство этого типа продукции. Всего за три года было собрано семь экземпляров устройства: для пользования в лабораториях МГУ, а также в вычислительных центрах Академии наук СССР и ряда министерств.

ЭВМ «Стрела»

«Стрела» выполняла 2 тысячи операций в секунду. Но аппарат был весьма массивным и потреблял 150 кВт энергии. В конструкции использовалось 6,2 тысячи ламп и более 60 тысяч диодов. «Махина» занимала площадь в 300 м 2 .

БЭСМ

После перевода в Москву (в 1952 году), в Институт точной механики и вычислительной техники, академик Лебедев взялся за производство нового электронно-вычислительного устройства - Большой Электронной Счетной Машины, БЭСМ. Заметим, что принцип построения новой ЭВМ во многом был заимствован у ранней разработки Лебедева. Реализация данного проекта послужила началом самой успешной серии советских компьютеров.

БЭСМ осуществляла уже до 10 000 исчислений в секунду. При этом использовалось всего 5000 ламп, а потребляемая мощность составляла 35 кВт. БЭСМ являлась первой советской ЭВМ «широкого профиля» - её изначально предполагалось предоставлять учёным и инженерам для проведения расчетов различной сложности.

Модель БЭСМ-2 разрабатывалась для серийного производства. Число операций в секунду довели до 20 тысяч. После испытаний ЭЛТ и ртутных трубок, в данной модели оперативная память уже была на ферритовых сердечниках (основной тип ОЗУ на следующие 20 лет). Серийное производство, начавшееся на заводе имени Володарского в 1958 году, показало результаты в 67 единиц техники. БЭСМ-2 положила начало разработок военных компьютеров, руководивших системами ПВО: М-40 и М-50. В рамках этих модификаций был собран первый советский компьютер второго поколения - 5Э92б, и дальнейшая судьба серии БЭСМ уже оказалась связана с транзисторами.

Переход на транзисторы в советской кибернетике прошёл плавно. Особо уникальных разработок в этот период отечественного компьютеростроения не значится. В основном старые компьютерные системы переукомплектовывали под новые технологии.

Большая электронная счетная машина (БЭСМ)

Полностью полупроводниковая ЭВМ 5Э92б, спроектированная Лебедевым и Бурцевым, была создана под конкретные задачи противоракетной обороны. Она состояла из двух процессоров (вычислительного и контроллера периферийных устройств), имела систему самодиагностики и допускала «горячую» замену вычислительных транзисторных блоков. Производительность равнялась 500 тысячам операций в секунду для основного процессора и 37 тысяч – для контроллера. Столь высокая производительность дополнительного процессора была необходима, поскольку в связке с компьютерным блоком работали не только традиционные системы ввода-вывода, но и локаторы. ЭВМ занимала больше 100 м 2 .

Уже после 5Э92б разработчики снова возвратились к БЭСМ. Основная задача здесь - производство универсальных компьютеров на транзисторах. Так появились БЭСМ-3 (осталась в качестве макета) и БЭСМ-4. Последняя модель была выпущена в количестве 30 экземпляров. Вычислительная мощность БЭСМ-4 - 40 операций в секунду. Устройство в основном применялось как «лабораторный образец» для создания новых языков программирования, а также как прототип для конструирования более усовершенствованных моделей, таких как БЭСМ-6.

За всю историю советской кибернетики и вычислительной техники БЭСМ-6 считается самой прогрессивной. В 1965 году это компьютерное устройство было самым передовым по управляемости: развитая система самодиагностики, несколько режимов работы, обширные возможности по управлению удалёнными устройствами, возможность конвейерной обработки 14 процессорных команд, поддержка виртуальной памяти, кэш команд, чтение и запись данных. Показатели вычислительных способностей - до 1 млн операций в секунду. Выпуск данной модели продолжался вплоть до 1987 года, а использование - до 1995-го.

«Киев»

После того, как академик Лебедев отбыл в «Златоглавую», его лаборатория вместе с персоналом перешла под руководство академика Б.Г. Гнеденко (директор Института математики АН УССР). В этот период был взят курс на новые разработки. Так, зарождается идея создания компьютера на электронных лампах и с памятью на магнитных сердечниках. Он получил название «Киев». При его разработке впервые был применен принцип упрощенного программирования - адресный язык.

В 1956 году бывшую лебедевскую лабораторию, переименованную в Вычислительный центр, возглавил В.М. Глушков (сегодня данное отделение действует как Институт кибернетики имени академика Глушкова НАН Украины). Именно под началом Глушкова «Киев» удалось завершить и ввести в эксплуатацию. Машина остается на службе в Центре, второй образец компьютера «Киев» был приобретен и собран в Объединенном институте ядерных исследований (г. Дубна, Московская область).

Виктор Михайлович Глушков

Впервые в истории применения компьютерной техники, с помощью «Киева» удалось наладить дистанционное управление технологическим процессами металлургического комбината в Днепродзержинске. Заметим, что объект испытаний был удален от машины почти на 500 километров. «Киев» был вовлечен в ряд экспериментов по искусственному интеллекту, машинному распознаванию простых геометрических фигур, моделированию автоматов для распознавания печатных и письменных букв, автоматическому синтезу функциональных схем. Под руководством Глушкова на машине была апробирована одна из первых систем управления базами данных реляционного типа («Автодиректор»).

Хотя основу устройства составляли те же электронные лампы, у «Киева» уже было феррит-трансформаторное ЗУ с объемом в 512 слов. Также аппарат использовал блок внешней памяти на магнитных барабанах с общим объемом в девять тысяч слов. Вычислительная мощность этой модели компьютера в триста раз превышала возможности МЭСМ. Структура команд - аналогичная (трехадресная на 32 операции).

«Киев» имел собственные архитектурные особенности: в машине был реализован асинхронный принцип передачи управления между функциональными блоками; несколько блоков памяти (ферритовая оперативная память, внешняя память на магнитных барабанах); ввод и вывод чисел в десятичной системе счисления; пассивное запоминающее устройство с набором констант и подпрограмм элементарных функций; развитая система операций. Устройство производило групповые операции с модификацией адреса для повышения эффективности обработки сложных структур данных.

В 1955 году лаборатория Рамеева переехала в Пензу для разработки ещё одной ЭВМ под названием «Урал-1» - менее затратной, от того и массовой машины. Всего 1000 ламп с энергопотреблением в 10 кВт - это позволило существенно снизить производственные затраты. «Урал-1» выпускался до 1961-го года, всего было собрано 183 компьютера. Их устанавливали в вычислительных центрах и конструкторских бюро по всему миру. Например, в центре управления полётами космодрома «Байконур».

«Урал 2-4» также был на электронных лампах, но уже использовал оперативную память на ферритовых сердечниках, выполнял по несколько тысяч операций в секунду.

Московский государственный университет в это время проектирует собственный компьютер - «Сетунь». Он также пошел в массовое производство. Так, на Казанском заводе вычислительных машин было выпущено 46 таких компьютеров.

«Сетунь» - электронно-вычислительное устройство на троичной логике. В 1959 году эта ЭВМ со своими двумя десятками вакуумных ламп выполняла 4,5 тысячи операций в секунду и потребляла 2,5 кВт энергии. Для этого использовались феррито-диодные ячейки, которые советский инженер-электротехник Лев Гутенмахер опробовал ещё в 1954 году при разработке своей безламповой электронной вычислительной машины ЛЭМ-1.

«Сетуни» благополучно функционировали в различных учреждениях СССР. При этом создание локальных и глобальных компьютерных сетей требовало максимальную совместимость устройств (т.е. двоичная логика). Будущее компьютеров стояло за транзисторами, тогда как лампы оставались пережитком прошлого (как когда-то механические реле).

«Сетунь»

«Днепр»

В свое время Глушкова называли новатором, он не раз выдвигал смелые теории в области математики, кибернетики и вычислительной техники. Многие из его инноваций были поддержаны и внедрены в жизнь еще при жизни академика. Но всецело оценить тот весомый вклад, который сделал ученый в развитие этих направлений, помогло время. С именем В.М. Глушкова отечественная наука связывает исторические вехи перехода от кибернетики к информатике, а там - к информационным технологиям. Институт кибернетики АН УССР (до 1962 года - Вычислительный центр АН УССР), возглавляемый выдающимся ученым, специализировался на усовершенствовании компьютерной вычислительной техники, разработке прикладного и системного программного обеспечения, систем управления промышленным производством, а также сервисов обработки информации прочих сфер деятельности человека. В Институте были развернуты масштабные исследования по созданию информационных сетей, периферии и компонентов к ним. Можно с уверенностью заключить, что в те годы усилия ученых были направлены на «покорение» всех основных направлений развития информационных технологий. При этом любая научно обоснованная теория тут же воплощалась в жизнь и находила свое подтверждение на практике.

Следующий шаг в отечественном компьютеростроении связан с появлением электронно-вычислительного устройства «Днепр». Этот аппарат стал первым для всего Союза полупроводниковым управляющим компьютером общего назначения. Именно на базе «Днепра» появились попытки серийного производства компьютерно-вычислительной техники в СССР.

Эта машина была разработана и сконструирована всего за три года, что считалось очень незначительным временем для такого проектирования. В 1961 году произошло переоснащение многих советских промышленных предприятий, и управление производством легло на плечи ЭВМ. Глушков позже попытался объяснить, почему удалось так быстро собрать аппараты. Оказывается, еще на стадии разработок и проектирования ВЦ тесно сотрудничал с предприятиями, где предполагалось установить компьютеры. Анализировались особенности производства, этапность, а также выстраивались алгоритмы всего технологического процесса. Это позволило более точно запрограммировать машины, исходя из индивидуальных промышленных особенностей предприятия.

Было проведено несколько экспериментов с участием «Днепра» по удаленному управлению производствами разной специализации: сталелитейным, судостроительным, химическим. Заметим, что в этот же период западные конструкторы спроектировали аналогичный отечественному полупроводниковый компьютер универсального управления RW300. Благодаря проектированию и введению в эксплуатацию ЭВМ «Днепр» удалось не только сократить дистанцию в развитии компьютерной техники между нами и Западом, но и практически ступать «нога в ногу».

Компьютеру «Днепр» принадлежит еще одно достижение: устройство производилось и использовалось как основное производственно-вычислительное оборудование на протяжении десяти лет. Это (по меркам компьютерной техники) достаточно значительный срок, так как для большинства подобных разработок этап модернизации и усовершенствования исчислялся пятью-шестью годами. Эта модель компьютера была настолько надежной, что ей было доверено отслеживать экспериментальный космический полет шатлов «Союз-19» и «Аполлон», состоявшийся в 1972 году.

Впервые отечественное компьютеростроение вышло на экспорт. Также был разработан генеральный план строительства специализированного завода по производству вычислительной компьютерной техники - завод вычислительных и управляющих машин (ВУМ), расположенный в Киеве.

А в 1968 году небольшой серией была выпущена полупроводниковая ЭВМ «Днепр 2». Эти компьютеры имели более массовое назначение и использовались для выполнения различных вычислительных, производственных и планово-экономических задач. Но серийное производство «Днепр 2» было вскоре приостановлено.

«Днепр» отвечал следующим техническим характеристикам:

  • двухадресная система команд (88 команд);
  • двоичная система счисления;
  • 26 двоичных разрядов с фиксированной запятой;
  • оперативное запоминающее устройство на 512 слов (от одного до восьми блоков);
  • вычислительная мощность: 20 тысяч операций сложения (вычитания) в секунду, 4 тысячи операций умножения (деления) в тех же временных частотах;
  • размер аппарата: 35-40 м 2 ;
  • энергопотребление: 4 кВт.

«Промінь» и ЭВМ серии «МИР»

1963 год становится переломным для отечественного компьютеростроения. В этот год на заводе по производству вычислительных машин в Северодонецке производится машина «Промінь» (с укр. - луч). В этом аппарате впервые были использованы блоки памяти на металлизированных картах, ступенчатое микропрограммное управление и ряд других инноваций. Основным назначением этой модели компьютера считалось произведение инженерных расчетов различной сложности.

Украинский компьютер «Промінь» («Луч»)

За «Лучом» в серийное производство поступили компьютеры «Промінь-М» и «Промінь-2»:

  • объем ОЗУ: 140 слов;
  • ввод данных: с металлизированных перфокарт или штекерный ввод;
  • количество одномоментно запоминающихся команд: 100 (80 - основные и промежуточные, 20 - константы);
  • одноадресная система команд с 32 операциями;
  • вычислительная мощность – 1000 простейших задач в минуту, 100 вычислений по умножению в минуту.

Сразу за моделями серии «Промінь» появилось электронно-вычислительное устройство с микропрограммным выполнением простейших вычислительных функций - МИР (1965 г.). Заметим, что в 1967 году на мировой технической выставке в Лондоне машина МИР-1 получила достаточно высокую экспертную оценку. Американская компания IBM (ведущий мировой производитель-экспортер компьютерной техники в то время) даже приобрел несколько экземпляров.

МИР, МИР-1, а за ними вторая и третья модификации были поистине непревзойденным словом техники отечественного и мирового производства. МИР-2, например, успешно соревновалась с универсальными компьютерами обычной структуры, превосходящими ее по номинальному быстродействию и объему памяти во много раз. На этой машине впервые в практике отечественного компьютеростроения был реализован диалоговый режим работы, использующий дисплей со световым пером. Каждая из этих машин была шагом вперед на пути построения разумной машины.

С появлением этой серии устройств в работу был внедрен новый «машинный» язык программирования - «Аналитик». Алфавит для ввода состоял из заглавных русских и латинских букв, алгебраических знаков, знаков выделения целой и дробной части числа, цифры, показателей порядка числа, знаков препинания и так далее. При вводе информации в машину можно было пользоваться стандартными обозначениями элементарных функций. Русские слова, например, «заменить», «разрядность», «вычислить», «если», «то», «таблица» и другие использовались для описания вычислительного алгоритма и обозначения формы выходной информации. Любые десятичные значения можно было вводить в произвольной форме. Все необходимые параметры вывода программировались в период постановки задач. «Аналитик» позволял работать с целыми числами и массивами, редактировать введенные или уже запущенные программы, менять разрядность вычислений путем замены операций.

Символическая аббревиатура МИР была ни чем иным, как аббревиатура основного назначения устройства: «машина для инженерных расчетов». Эти устройства принято считать одними из первых персональных компьютеров.

Технические параметры МИР:

  • двоично-десятичная система счисления;
  • фиксированная и плавающая запятая;
  • произвольная разрядность и длина производимых расчетов (единственное ограничение накладывал объем памяти - 4096 символов);
  • вычислительная мощность: 1000-2000 операций в секунду.

Ввод данных осуществлялся за счет печатающего клавиатурного устройства (электрической машинки Zoemtron), идущего в комплекте. Соединение комплектующих происходило посредством микропрограммного принципа. В последствии благодаря этому принципу удалось усовершенствовать как сам язык программирования, так и прочие параметры устройства.

Супермашины серии «Эльбрус»

Выдающийся советский разработчик В.С. Бурцев (1927-2005 гг.) в истории отечественной кибернетики считается главным конструктором первых в СССР суперкомпьютеров и вычислительных комплексов для систем управления реального времени. Он разработал принцип селекции и оцифровки сигнала радиолокации. Это позволило произвести первую в мире автоматическую съемку данных с обзорной радиолокационной станции для наведения истребителей на воздушные цели. Успешно проведенные эксперименты по одновременному сопровождению нескольких целей легли в основу создания систем автонаведения на цель. Такие схемы строились на базе вычислительных устройств «Диана-1» и «Диана-2», разработанных под руководством Бурцева.

Далее группа ученых разработала принципы построения вычислительных средств противоракетной обороны (ПРО), что привело к появлению радиолокационных станций точного наведения. Это был отдельный высокоэффективный вычислительный комплекс, позволяющий с максимальной точностью производить автоматическое управление за сложными, разнесенными на большие расстояния объектами в режиме онлайн.

В 1972 году для нужд ввозимых комплексов противовоздушной обороны были созданы первые вычислительные трехпроцессорные машины 5Э261 и 5Э265, построенные по модульному принципу. Каждый модуль (процессор, память, устройство управления внешними связями) был полностью охвачен аппаратным контролем. Это позволило осуществлять автоматическое резервное копирование данных в случае, если происходили сбои или отказ в работе отдельных комплектующих. Вычислительный процесс при этом не прерывался. Производительность данного устройства была для тех времен рекордной - 1 млн операций в секунду при очень малых размерах (менее 2 м 3). Эти комплексы в системе С-300 по сей день используются на боевом дежурстве.

В 1969 году была поставлена задача разработать вычислительную систему с производительностью 100 млн операций в секунду. Так появляется проект многопроцессорного вычислительного комплекса «Эльбрус».

Разработка машин «запредельных» возможностей имела характерные отличия наряду с разработками универсальных электронно-вычислительных систем. Здесь предъявлялись максимальные требования как к архитектуре и элементной базе, так и к конструкции вычислительной системы.

В работе над «Эльбрусом» и рядом предшествующих им разработок ставились вопросы эффективной реализации отказоустойчивости и непрерывного функционирования системы. Поэтому у них появились такие особенности, как многопроцессорность и связанные с ней средства распараллеливания ветвей задачи.

В 1970 году началось плановое строительство комплекса.

В целом «Эльбрус» считается полностью оригинальной советской разработкой. В него были заложены такие архитектурные и конструкторские решения, благодаря которым производительность МВК практически линейно возрастала при увеличении числа процессоров. В 1980 году «Эльбрус-1» с общей производительностью 15 млн операций в секунду успешно прошел государственные испытания.

МВК «Эльбрус-1» стал первой в Советском Союзе ЭВМ, построенной на базе ТТЛ-микросхем. В программном отношении ее главное отличие - ориентация на языки высокого уровня. Для данного типа комплексов были также созданы собственная операционная система, файловая система и система программирования «Эль-76».

«Эльбрус-1» обеспечивала быстродействие от 1,5 до 10 млн операций в секунду, а «Эльбрус-2» - более 100 млн операций в секунду. Вторая ревизия машины (1985 год) представляла собой симметричный многопроцессорный вычислительный комплекс из десяти суперскалярных процессоров на матричных БИС, которые выпускались в Зеленограде.

Серийное производство машин такой сложности потребовало срочного развертывания систем автоматизации проектирования компьютеров, и эта задача была успешно решена под руководством Г.Г. Рябова.

«Эльбрусы» вообще несли в себе ряд революционных новшеств: суперскалярность процессорной обработки, симметричная многопроцессорная архитектура с общей памятью, реализация защищенного программирования с аппаратными типами данных - все эти возможности появились в отечественных машинах раньше, чем на Западе. Созданием единой операционной системы для многопроцессорных комплексов руководил Б.А. Бабаян, в свое время отвечавший за разработку системного программного обеспечения БЭСМ-6.

Работа над последней машиной семейства, «Эльбрус-3» с быстродействием до 1 млрд. операций в секунду и 16 процессорами, была закончена в 1991 году. Но система оказалась слишком громоздкой (за счет элементной базы). Тем более, что на тот момент появились более экономически выгодные решения строительства рабочих компьютерных станций.

Вместо заключения

Советская промышленность была в полной мере компьютеризирована, но большое количество слабо совместимых между собой проектов и серий привело к некоторым проблемам. Основное «но» касалось аппаратной несовместимости, что мешало созданию универсальных систем программирования: у всех серий были разные разрядности процессоров, наборы команд и даже размеры байтов. Да и массовым серийное производство советских компьютеров вряд ли можно назвать (поставки происходили исключительно в вычислительные центры и на производство). В то же время отрыв американских инженеров увеличивался. Так, в 60-х годах в Калифорнии уже уверенно выделялась Силиконовая долина, где вовсю создавались прогрессивные интегральные микросхемы.

В 1968 году была принята государственная директива «Ряд», по которой дальнейшее развитие кибернетики СССР направлялось по пути клонирования компьютеров IBM S/360. Сергей Лебедев, остававшийся на тот момент ведущим инженером-электротехником страны, отзывался о «Ряде» скептически. По его мнению, путь копирования по определению являлся дорогой отстающих. Но другого способа быстро «подтянуть» отрасль никто не видел. Был учреждён Научно-исследовательский центр электронной вычислительной техники в Москве, основной задачей которого стало выполнение программы «Ряд» - разработки унифицированной серии ЭВМ, подобных S/360.

Результат работы центра - появление в 1971 году компьютеров серии ЕС. Несмотря на сходство идеи с IBM S/360, прямого доступа к этим компьютерам советские разработчики не имели, поэтому проектирование отечественных машин начиналось с дизассемблирования программного обеспечения и логического построения архитектуры на основании алгоритмов её работы.

«Если рассмотреть образцы вооружений разных родов войск, да еще в историческом аспекте, сколько образцов советской военной техники были лучшими сравнительно с теми же американскими? Где больше было денег, современного исследовательского и производственного оборудования, ученых? Может СССР лидировал в создании компьютеров, программного обеспечения?»


Хочу сказать отдельное спасибо sevtrash, который сподвиг меня на написание данной статьи, и чьи фразы из комментариев я использовал в качестве эпиграфа.

Словосочетания «российский процессор» или «советский компьютер», к сожалению, вызывают ряд специфических ассоциаций, внедренных нашими СМИ, бездумно (или напротив сознательно) тиражирующими западные статьи. Все уже привыкли считать, что это допотопные устройства, громоздкие, слабые, неудобные, да и вообще, отечественная техника - это всегда повод для сарказма и иронии. К сожалению, мало кто знает, что СССР в определенные моменты вычислительной техники был «впереди планеты всей». И еще меньше информации вы найдете о современных отечественных разработках в этой области.

Советский Союз называют страной, обладавшей одной из самых сильных научных школ в мире, не только «квасные» патриоты. Это объективный факт, основанный на глубоком анализе системы образования экспертами Британской ассоциации педагогов. Исторически в СССР особый упор делался на подготовку специалистов в области естественных наук, инженеров и математиков. В середине XX века в стране Советов существовало несколько школ разработки вычислительной техники, и недостатка квалифицированных кадров для них не наблюдалось, именно поэтому были все предпосылки для успешного развития новой отрасли. Десятки талантливых ученых и инженеров участвовали в создании различных систем электронных счетных машин. Речь сейчас пойдет только об основных вехах развития в СССР цифровых ЭВМ. Работа же над аналоговыми машинами была начата еще до войны и в 1945 году первая в СССР аналоговая машина уже работала. До войны же были начаты исследования и разработки быстродействующих триггеров - основных элементов цифровых ЭВМ.


Сергея Алексеевича Лебедева (1902 - 1974 гг.) небезосновательно называют основоположником развития вычислительной техники в Советском Союзе - под его руководством были разработаны 15 типов ЭВМ, от простейших ламповых до суперкомпьютеров на интегральных схемах

В СССР было известно о создании американцами в 1946 году машины ENIAC - первой в мире ЭВМ с электронными лампами в качестве элементной базы и автоматическим программным управлением. Несмотря на то, что Советские ученые знали о существовании этой машины, тем не менее, как и любая другая информация, просачивавшаяся в Россию во времена холодной войны, эти данные были весьма скудными и невнятными. Поэтому разговоры о том, что советская вычислительная техника копировалась с западных образцов, - не более чем инсинуации. Да и о каких «образцах» может идти речь, если действующие модели компьютеров в то время занимали два-три этажа и доступ к ним имел лишь весьма ограниченный круг лиц? Максимум, который могли получить отечественные шпионы, - отрывочные сведения из технической документации и стенограммы с научных конференций.

В конце 1948 года академик С.А.Лебедев начал работу над первой отечественной машиной. Через год была разработана архитектура (с нуля, без каких-либо заимствований), а также принципиальные схемы отдельных блоков. В 1950 году ЭВМ была в рекордные сроки смонтирована силами всего лишь 12 научных сотрудников и 15 техников. Свое детище Лебедев назвал «Малая электронная счетная машина», или МЭСМ. «Ребеночек», состоявший из шести тысяч электронных ламп, занял целое крыло двухэтажного здания. Пусть никого не шокируют такие размеры. Западные образцы были ничуть не меньше. На дворе стоял пятидесятый год и балом еще правили радиолампы.

Следует отметить, что в СССР МЭСМ была запущена в то время, когда в Европе была только одна ЭВМ - английская ЭДСАК, запущенная всего на год раньше. Но процессор МЭСМ был намного мощнее за счет распараллеливания вычислительного процесса. Аналогичная ЭДСАК машина - ЦЭМ-1 - была принята в эксплуатацию в Институте атомной энергии в 1953 году - и она также превосходила ЭДСАК по ряду параметров.

При создании МЭСМ были использованы все основополагающие принципы создания компьютеров, такие как наличие устройств ввода и вывода, кодирование и хранение программы в памяти, автоматическое выполнение вычислений на основе хранимой в памяти программы и т.д. Главное, это была ЭВМ на основе использующейся и в настоящее время в вычислительной технике двоичной логики (американская ENIAC использовал десятичную систему(!!!), и кроме того на ней был применен разработанный С.А. Лебедевым принцип конвейерной обработки, когда потоки команд и операндов обрабатываются параллельно, применяется сейчас во всех ЭВМ в мире.

Вслед за малой электронно-счетной машиной последовала и большая - БЭСМ-1. Разработка была завершена осенью 1952 года, после чего Лебедев стал действительным членом Академии наук СССР.

В новой машине был учтен опыт создания МЭСМ и применена улучшенная элементная база. Компьютер обладал быстродействием в 8-10 тысяч операций в секунду (против всего лишь 50 операций в секунду у МЭСМ), внешние запоминающие устройства были выполнены на основе магнитных лент и магнитных барабанов. Несколько позже ученые экспериментировали с накопителями на ртутных трубках, потенциалоскопах и ферритовых сердечниках.
Если в СССР о западных ЭВМ знали мало, то в Европе и США о советских компьютерах не знали практически ничего. Поэтому доклад Лебедева на научной конференции в Дармштадте стал настоящей сенсацией: оказалось, что собранная в Советском Союзе БЭСМ-1 является самым производительным и мощным компьютером в Европе.

В 1958 году после еще одной модернизации оперативной памяти БЭСМ, уже получившая название БЭСМ-2 производилась серийно на одном из заводов Союза. Результатом дальнейшей работы коллектива под руководством Лебедева стало развитие и усовершенствование первых БЭСМ. Было создано новое семейство суперкомпьютеров под маркой «М», чей серийный образец М-20, выполнявший до 20 тысяч операций в секунду, стал на тот момент самой быстройдействующей ЭВМ в мире.

1958 год стал еще одной важной, хоть и малоизвестной вехой в развитии вычислительной техники. Под руководством В. С. Бурцева, ученика Лебедева, комплекс, состоявший из нескольких машин М-40 и М-50 (глубокая модернизации М-20), в том числе расположенных на мобильной платформе, был объединен между собой в беспроводную сеть, работавшую на расстояниях до 200 км. При этом официально считается, что первая в мире компьютерная сеть заработала только в 1965 году, когда были соединены компьютеры TX-2 Массачусетского технологического института и Q-32 корпорации SDC в Санта-Монике. Таким образом, вопреки американскому мифу, компьютерная сеть была впервые разработана и воплощена в СССР, на целых 7 лет раньше.

Специально для нужд военных, в том числе для Центра контроля космического пространства, было разработано несколько моделей ЭВМ на базе М-40 и М-50, ставшие «кибернетическим мозгом» советской противоракетной системы, созданной под руководством В.Г. Кисунько и сбившей в 1961 году реальную ракету - американцы смогли повторить это только через 23 года.

Первой полноценной машиной второго поколения (на полупроводниковой основе) стала БЭСМ-6. Эта машина обладала рекордным для того времени быстродействием - около миллиона операций в секунду. Многие принципы ее архитектуры и структурной организации стали настоящей революцией в вычислительной технике того периода и, по сути, были уже шагом в третье поколение ЭВМ.


БЭСМ-6, созданная в СССР в 1966 году, обладала рекордным для того времени быстродействием - около миллиона операций в секунду

В БЭСМ-6 было реализовано расслоение оперативной памяти на блоки, допускающие одновременную выборку информации, что позволило резко увеличить скорость обращений к системе памяти, широко использован принцип совмещения выполнения команд (до 14 машинных команд могли одновременно находиться в процессоре на разных стадиях выполнения). Этот принцип, названный главным конструктором БЭСМ-6 академиком С.А.Лебедевым принципом "водопровода", стал впоследствии широко использоваться для повышения производительности универсальных ЭВМ, получив в современной терминологии название "конвейера команд". Был впервые внедрен метод буферизации запросов, создан прообраз современной кэш-памяти, реализована эффективная система многозадачности и обращения к внешним устройствам и многие другие инновации, некоторые из которых применяются до сих пор. БЭСМ-6 оказалась настолько удачной, что серийно выпускалась в течение 20 лет и эффективно работала в различных государственных структурах и институтах.

К слову, созданный в Швейцарии Международный центр ядерных исследований пользовался для расчетов машинами БЭСМ. И еще один показательный факт, бьющий по мифу об отсталости нашей вычислительной техники… Во время советско-американского космического полета «Союз-Аполлон» советская сторона, пользующаяся БЭСМ-6, получала обработанные результаты телеметрической информации за минуту - на полчаса раньше, чем американская сторона.

Интересна в этой связи статья куратора Музея вычислительной техники в Великобритании Дорона Свейда о том, как он покупал в Новосибирске одну из последних работающих БЭСМ-6. Заголовок статьи говорит сам за себя: "Российская серия суперкомпьютеров БЭСМ, разрабатывавшаяся более чем 40 лет тому назад, может свидетельствовать о лжи Соединенных Штатов, объявлявших технологическое превосходство в течение лет холодной войны".

В СССР действовало множество творческих коллективов. Институты С.А.Лебедева, И.С.Брука, В.М.Глушкова - только крупнейшие из них. Иногда они конкурировали, иногда дополняли друг друга. И все работали на острие мировой науки. Мы пока говорили в основном о разработках академика Лебедева, но и остальные коллективы в своей работе опережали зарубежные разработки.

Так, например, в конце 1948 года сотрудники Энергетического института им. Крижижановского Брук и Рамеев получают авторское свидетельство на ЭВМ с общей шиной, а в 1950-1951 гг. создают ее. В этой машине впервые в мире вместо электронных ламп используются полупроводниковые (купроксные) диоды.

А в тот же период, когда С.А..Лебедевым создавалась БЭСМ-6, академик В.М. Глушков завершил разработку большой ЭВМ «Украина», идеи устройства которой позднее были использованы в больших американских ЭВМ 1970-х годов. Созданное же академиком Глушковым семейство ЭВМ «МИР» опередило на двадцать лет американцев - это были прообразы персональных компьютеров. В 1967 году фирма IBM купила «МИР-1» на выставке в Лондоне: у IBM был спор о приоритете с конкурентами, и машина была куплена для того, чтобы доказать, что принцип ступенчатого микропрограммирования, запатентованный конкурентами в 1963 году, давным-давно известен русским и применяется в серийных машинах.


Пионер информатики и кибернетики, академик Виктор Михайлович Глушков (1923-1982) известен специалистам во всем мире своими научными результатами мирового значения в математике, информатике и кибернетике, вычислительной технике и программировании

Следующим этапом развития вычислительной техники в СССР стали работы по созданию супер-ЭВМ, семейство которых получило название «Эльбрус». Этот проект был начат еще Лебедевым, а после его смерти был возглавлен Бурцевым.

Первый многопроцессорный вычислительный комплекс «Эльбрус-1» был запущен в 1979 году. Он включал в себя 10 процессоров и обладал быстродействием порядка 15 миллионов операций в секунду. Эта машина на несколько лет опередила ведущие западные образцы ЭВМ. Симметричная многопроцессорная архитектура с общей памятью, реализация защищенного программирования с аппаратными типами данных, суперскалярность процессорной обработки, единая операционная система для многопроцессорных комплексов - все эти возможности, реализованные в серии "Эльбрус", появились значительно раньше, чем на Западе, принцип которой используется по сей день в современных суперкомпьютерах.

«Эльбрусы» вообще внесли в теорию вычислительных машин ряд революционных новшеств. Это суперскалярность (обработка за один такт более одной инструкции), реализация защищенного программирования с аппаратными типами данных, конвейеризация (параллельная обработка нескольких инструкций) и др. Все эти возможности впервые появились в советских компьютерах. Еще одним основным отличием системы «Эльбрус» от ей подобных, выпускавшихся в Союзе ранее, является ориентация на языки программирования высокого уровня. Базовый язык («Автокод Эльбрус Эль-76») был создан В. М. Пентковским, и впоследствии ставшим главным архитектором процессоров Pentium.

Следующая модель этой серии, "Эльбрус-2", выполнял уже 125 миллионов операций в секунду. "Эльбрусы" работали в целом ряде важных систем, связанных с обработкой радиолокационной информации, на них считали в номерных Арзамасе и Челябинске, а многие компьютеры этой модели до сих пор обеспечивают функционирование систем противоракетной обороны и космических войск.

Последней моделью этой серии стал "Эльбрус 3-1", отличавшийся модульностью конструкции и предназначавшийся для решения больших научных и экономических задач, в том числе моделирования физических процессов. Его быстродействие достигло 500 миллионов операций в секунду (на некоторых командах), в два раза более быстро, чем самая производительная американская супермашина того времени Cray Y-MP.

После развала СССР, один из разработчиков Эльбрусов, Владимир Пентковский эмигрировал в США и устроился на работу в корпорацию Intel. Вскоре он стал ведущим инженером корпорации и под его руководством в 1993 году в Intel разработали процессор Pentium, по слухам, названный так именно в честь Пентковского.

Пентковский воплощал в Intel"овских процессорах те советские ноу-хау, которые знал, и к 1995 году фирма Intel выпустила более совершенный процессор Pentium Pro, который вплотную приблизился по своим возможностям к российскому микропроцессору 1990 года Эль-90, но так и не догнал его, хотя и был создан на 5 лет позже.

По словам Кейта Диффендорфа, редактора бюллетеня Microprocessor Report, компания Intel переняла огромный опыт и совершенные технологии, разработанные в Советском Союзе, в том числе основополагающие принципы современных архитектур, такие как SMP (симметричная мультипроцессорная обработка), суперскалярная и EPIC (Explicitly Parallel Instruction Code - код с явным параллелизмом инструкций) архитектуры. На основе этих принципов в Союзе уже выпускались компьютеры, в то время как в США эти технологии только «витали в умах ученых (!!!)».

Хочу подчеркнуть, что в статье говорилось исключительно о воплощенных в «железе» и выпускавшихся серийно компьютерах. Поэтому, зная фактическую историю советской вычислительной техники, сложно согласиться с мнением об ее отсталости. Более того, ясно видно, что в этой отрасли мы стабильно были в авангарде. Вот только об этом, к сожалению, мы не слышим ни с экранов телевизоров, ни из иных СМИ.